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The software Maple as a powerful tool to 
analyze complicated non-linear dynamic systems is 
used to explore parametrical conditions 
guaranteeing the stability of resting or rotating free 
magnetically levitated flywheel’s rotor, to solve the 
Cauchy problem and to build the phase portraits. 
The dynamical model is derived on the basis of 
analytical electromechanics with taking into 
account six degrees of freedom of a free rotor, the 
constancy of full magnetic fluxes coupled with 
immobile and rotor’s superconducting rings, 
Lyapunov stability theorems, and Euler equations 
of a free body dynamics. 
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Maple- дослідження вільного ротора на 
надпровідних підшипниках 
 

Система комп’ютерної математики Maple 
як засіб аналізу складних нелінійних динамічних 
систем застосована для дослідження 
параметричних умов, що гарантують 
стійкість вільного магнітно левітуючого 
ротора у стані рівноваги або при обертанні, 
для розв’язання задачі Коші і для побудови 
фазових портретів. Динамічна модель 
отримана на основі аналітичної 
електромеханіки з врахуванням шести степенів 
свободи вільного ротора, сталості повного 
магнітного потоку, зв’язаного з нерухомими 
надпровідними кільцями та кільцями  ротора, 
теорем Ляпунова про стійкість та динамічних 
рівнянь Ейлера для вільного тіла.  
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I. INTRODUCTION 
Magnetic bearings become a very important 

element for renewable energy sources, end-use 
energy efficiency, environmentally preferred 
advanced generation, and flywheel energy storage. 
As it is expected, devices using magnetic bearings 
can be widely implemented, from automobile or 
helicopter engines to power reserve flywheels to level 
peak energy consumptions. 

We developed a new type of magnetic bearings 
based on the “Magnetic Potential Well” (MPW) 
phenomenon [1, 2]. For two constantly oriented 
closed superconducting loops, the MPW-
manifestation signifies that with nearing of these 
spaced loops, their magnetic attractive force does not 
increase as usually but decreases, becomes zero and 
changes into the repulsive magnetic force before the 
spacing between loops equals zero. A similar picture 
can be observed in a permanent magnet-closed zero 
resistant loop pair. The MPW can be also realized in 
a system with many magnets. 

Magnetic bearings have many advantages over 
ball, gas, and hydro bearings: practically unlimited 
operating time, absence of a lubricant, simplicity and 
reliability of operation, etc. But many applications of 

magnetic bearings require solving some problems. 
One of them is the stability of the free resting or 
rotating rotor. Trials to suspend a body in the free 
equilibrium under action of magnetic forces are 
fruitless on the basis of Earnshaw’s theorem [3]. 
There are only three exceptions not covered by this 
theorem. One of them is automation allowing 
transforming an unstable dynamic system into the 
stable system by e.g. feed-back control. The second is 
diamagnetism of a substance particularly bulk 
superconductors [4 - 6]. And finally, the MPW based 
on zero resistance of a closed current carrying loop 
[1, 2]. It should be noted that any of these exceptions 
assists but doesn’t guarantee the free body rest or 
rotation stability. 

Not only stability but also centring force levels 
are important in bearing applications. The stiffness of 
magnetic bearing must be on the level of commercial 
bearings operating with radial stiffness no less than 
106-107 N/mm. Possibilities to satisfy these levels by 
known magnetic bearings do not look optimistic. 
Really, the top pressure of “warm” magnetic bearings 
with automation is restricted from above app. by 

 N/m2 determined by the magnetic saturation 
induction of 2-2.5 Tesla. For characteristic bearing 



Вісник Київського університету 
Серія: фізико-математичні науки 

2008, 1 Bulletin of University of Kyiv 
Series: Physics & Mathematics 

 

 
 

size of 0.1 m it gives magnetic bearing stiffness of  
 N/m that corresponds with published data [7]. 

The  top  pressure  of  103-104 N/m2  for  passive  
superconducting bearings based on the ideal 
diamagnetism is restricted by the first critical 
magnetic field, which is less than 0.2 Tesla for all 
known superconductors. This is too low value to be 
estimated as practicable. 

In contrast to known magnetic bearings, instead 
of relying on the superconductor diamagnetism or 
automatic control to keep the air gap within required 
limits, we propose to use the MPW phenomenon. 
Manifestation of this phenomenon requires ideal 
electric conductivity in a closed loop of any shape. 
This allows using existing high current density 
superconductors e.g. niobium-titanium, niobium-
germanium, and niobium-tin joining. Super-
conducting magnets using these superconductors and 
operating in the persistent current mode are in 
abundance. They are capable of generating constant 
magnetic field no less than 10-20 Tesla without 
electric losses that is unreachable in all other 
magnetic bearings. Before MPW these magnets were 
used as high magnetic field sources only. Now their 
applications can be MPW-bearings with pressure of 
108  N/m2 and stiffness of 107 N/m. 

 

II. FLYWHEEL MODEL 

A. Coordinate Systems  
A flywheel is modeled by two stator’s coaxial 

immobile superconductive rings magnetically 
interacting with two sets of N small planar 
superconductive circular loops (dipoles) equally 
shifted in relation to the rotor’s axis (see Figure 1). 
The MPW is realized in a set of N dipoles and the 
nearer superconductive immobile ring. It means that 
at some rotor/stator coaxiality position, the electric 
current in each dipole is zero because its full 
magnetic flux (magnetic linkage) that is constant on 
the basis of the Faraday’s electromagnetic induction 
law is created by the nearer immobile ring, yet at any 
another rotor/stator geometrical configuration this 
current is non-zero to satisfy the magnetic linkage 
constancy. 

To determine the potential energy of magnetic 
interaction, it is convenient to introduce some 
trihedrons. The origin O of the immobile trihedron 

 with unit vectors , ,  is the symmetry 
center of two coaxial superconductive rings of radius 
a, and the vertical rings’ symmetry axis Oz is parallel 
to the gravity force.  

The origin O1 of the second trihedron O1x1y1z1 
with unit vectors coincides with a free rotor 
mass center so that axis O1z1 is directed along the 
rotor’s symmetry axis. As an example, the case N = 4 
is shown in Figure 1. The free rotor is described by 
six degrees of freedom. The first three are Cartesian 

-coordinates x, y, z of the point O1. Non-
dimensional linear coordinates X, Y, and Z are 
derived by division of a corresponding Cartesian 
Oxyz-coordinate by value a. The other three degrees 
of freedom are the Euler-Krylov angles x4, x5, x6 
determining the rotor space orientation and x4 is 
rotation relatively axis O1x1, x5 is rotation relatively 
axis O1y1, and x6 is rotation relatively axis O1z1 at 
that. 

 
 

Fig. 1.  Sketch of the flywheel. 
 

B. Potential Energy of Gravity and Magnetic 
Interactions 

The potential energy U of the flywheel dynamic 
system consists of two parts. One is the gravity 
represented by the rotor’s constant weight force. The 
second is the sum of magnetic interactions of each j-
immobile superconducting ring (j =1,2) and N dipoles 
of upper or lower part of the rotor. Magnetic 
interactions between dipoles are ignored as 
infinitesimal. Dipoles are supposed to be zero 
resistance closed loops with taking into account the 
constancy of their magnetic linkages as a 
consequence of zero resistance of each dipole’s loop. 
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The MPW-position that is at our disposal 
corresponds to the coincidence of axes  and . 
At this coaxiality position, the rotor’s weight G = mg 
where m is its mass and g is the gravity acceleration 
can be balanced at  by the difference in 
attractive forces of the upper part of superconducting 
loops (one immobile and N on the rotor top) directed 
above and the lower similar part directed downward. 
Such coaxial equilibrium can be accomplished e.g. 
by the adjusted parameter  that is 
ratio between the upper immobile superconducting 
ring magnetic linkage  and lower ring linkage . 

Below we use the matrix  determining a 
relative space orientation of the trihedrons and 

 (see e.g. [8], p.119) in the expanded form 

    (1) 

where , , and elements of the 
first row present projections of the unit vector on axis 
O1x1 etc. 

Introducing radius vector  of the point O1, 
vectors  forming the closed polygon 
for the upper part of magnetically interacting loops 
(see Figure 1) and similar vector polygon for the 
lower part of magnetically interacting loops (not 
depicted in Figure 1), and using (1) for the 
components of the vectors connecting arc’s elements 
of rings and dipole centers after transformations, one 
can obtain  

, 

,   

 

    (2) 
where index j = 1 is applied to the upper and j = 2 to 
the lower parts of loops, parameter h is a non-
dimensional half-distance between rotor’s loops, H is 
the same for the immobile rings, and the angle tij 
together with non-dimensional shift A determine a 
dipole-place on the rotor. 

The mutual inductance between a ring and a 
dipole can be derived as the magnetic flux generated 
by the unit electric current in the corresponding ring 
and piercing this dipole area. Assuming that each 
dipole plane is perpendicular to the rotor axis and its 
area equals S, taking into account known formulae 
for the ring magnetic induction (see e.g. [9]) and (2), 

for the non-dimensional ring-dipole mutual 
inductance the following formula takes place 

      (3) 

where 

 

      (4) 

 

where ,  are full elliptic integrals of the 
modulus 

.      (5) 

Any non-dimensional ring-dipole inductance L0 
corresponding to the MPW-position is determined by 
zero values of all non-dimensional degrees of 
freedom ( ) in (3). 

On the basis of analytical electromechanics [10], 
the magnetic energy represented as a function of the 
magnetic linkages and mechanical coordinates 
(degrees of freedom) is the potential energy of an 
electromechanical dynamic system. Therefore, with 
taking into account the said suppositions and 
smallness in sizes of dipoles loops, one can derive the 
formula for the potential energy u in the non-
dimensional form 

      (6) 

where characteristic magnetic energy U0 and non-
dimensional gravity energy U1 are respectively 

, .     (7) 

III. THE STABILITY PROBLEM 

One of essential problems is the stability problem 
for either equilibrium or spinning of a levitated rotor. 
This problem can be investigated without 
corresponding dynamic equations analysis on the 
basis of the Lyapunov’s theorem about partial 
stability [11]. This problem is reduced to finding the 
positivity conditions for the potential energy 
expanded into the Taylor series in corresponding 
variables. In our case using Maple [12], the Taylor 
series for N= 4 dipole can be written as 
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.      (8) 

where expressions for values Bi (i=1,..,3) are too 
cumbersome functions of the geometrical parameters 
and here are omitted. In accordance with Lyapunov’s 
theorem, the sufficient conditions of the free 
equilibrium stability are equivalent to positive all 
parameters Bi. As simulations show, this requirement 
can be satisfied by a relevant choice of the system 
parameters. 

IV. THE DYNAMICS MODEL 

The potential energy determined above and Euler 
equations of a free body dynamics [8] allow deriving 
the starting equations of the rotor motion in the non-
dimensional form (function u is determined by (6)) 

, 

, 

, 

,

, 

,                     (9) 

, 

, 

. 

Here non-dimensional parameter  
is ratio between magnetic characteristic energy U0 
and characteristic kinetic energy (w is the 
characteristic angular velocity); non-dimensional 
parameter  determines ratio between 
magnetic characteristic energy U0 and rotating kinetic 
energy with inertia moment I1 relatively axis O1x1 or 
O1y1; non-dimensional parameter  is 
ratio of the rotor main central inertia moments (  is 
the inertia moment relatively axis O1z1); n1, n2, n3 are 
non-dimensional angular velocity components on 

axis O1x1, O1y1, and O1z1 respectively, and t is the 
non-dimensional time. 

Expressions for partial derivatives of the non-
dimensional potential energy u in (9) are too 
cumbersome and therefore omitted. 

The conservative 12th-order system (9) with 
potential energy determined above is too complicated 
to be analyzed by known analytical methods. In this 
case the software Maple11 [12] is more relevant.  

We have developed Maple-based tools that give 
full realization of the free rotor dynamics. As an 
example, we represent numerical solutions for the 
Cauchy problem and phase portraits building. The 
plots of solutions and phase portraits shown in 
Figures 2-5 depict the case of assumed , 

, , ,  and the following 

initial conditions: , , 

, , , , 
, , , , 

, . 
 

 
 

Fig. 2.  Phase portrait , , .  

 

 
 

Fig. 3.  Radial separation versus time. 
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Fig. 4.  Phase portrait of . 

 

  
Fig. 5.  Phase portrait of . 

V. CONCLUSIONS 

The free rotor dynamics problem is considered in 
the parts of mathematical model construction, 
substantiation of the free equilibrium stability (i.e. 
levitation), and dynamic analysis on the basis of the 
modern computer tools. The mathematical model 
taking into account six degrees of freedom proved to 
be complicated non-linear conservative dynamic 
system of  the  12th-order,  an  analytically unsolvable 
problem. 

The free equilibrium stability i.e. levitation 
derived on the Lyapunov’s theorem is possible by the 
MPW-manifestation and relevant choice of the 
magnetic and geometrical parameters. 

As examples demonstrate, the software Maple 
proved to be the effective computer tool to analyze 

the free rotor dynamics. This approach can be useful 
to develop superconducting bearings [13-16]. 
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