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Abstract 

Recent studies have evidenced serious difficulties in detecting covert awareness with EEG 
based techniques both in unresponsive patients and in healthy control subjects. This work 
reproduces the protocol design in the two recent mental imagery studies (1,2) with a larger 
group comprising twenty healthy volunteers. The main goal is assessing if modifications in 
the signal extraction techniques, training-testing/cross-validation routines, and hypotheses 
evoked in the statistical analysis, can provide solutions to the serious difficulties documented 
in the literature. The lack of robustness in the results advises for further search of alternative 
protocols more suitable for machine learning classification and of better performing signal 
treatment techniques. Specific recommendations are made using the findings in this work. 
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1.- Introduction 

Recent advances in brain imaging have led to the development of new methods for detecting 
awareness in unresponsive patients with disorders of consciousness (DOC).  In the absence 
of obvious behavioral responses, imaging-based diagnostic methods can be used to reveal 
covert and volitional reactions. For example, some patients, initially diagnosed as being in a 
vegetative state, showed patterns of cerebral activation similar to those of healthy subjects 
when asked to perform mental imagery tasks like imagining playing tennis or moving inside 
their house, hence indicating the presence of awareness (3,4). Even though such findings 
may prove useful at the time of providing diagnoses and prognoses, they are still not part of 
standard clinical care. This is in part due to the fact that the detection methods developed so 
far require a good understanding of the implications of the protocols chosen and of the 
statistical techniques used to interpret the collected data since they may have a major impact 
on the results (5). Needless to say that inadequate analyses can lead to misdiagnoses and 
have major consequences for patients and their families.  
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New electroencephalography (EEG) based protocols have been recently developed with the 
goal of assessing awareness (1,6–8). In (1) the authors demonstrated that it is feasible to 
use EEG signals acquired from patients with DOC by asking them to perform different mental 
tasks in order to determine the presence of awareness; in that specific study, the two mental 
tasks were imagining squeezing the right hand or imagining wiggling the toes. A part of the 
information extracted from the EEGs recorded while completing the two tasks was used for 
the supervised training of a support vector machine (SVM), whose performance was tested 
using the remaining data. The good accuracies in the testing phase that were detected for 
some patients in a vegetative or a minimally conscious state were declared in (1) as a sign of 
covert awareness. Unfortunately, a statistical reanalysis in (2) of the original data in (1) based 
on more realistic hypotheses, questioned the actual presence of covert awareness in these 
patients and, moreover, detected it in only 40% of the healthy control subjects, which is 
significantly lower than the 75% initially established. The authors of the original study 
answered in (9) that an analysis approach that is more sensitive but potentially prone to false 
detection is preferable under some circumstances to a poorly sensitive technique that 
prevents the appearance of false detection. 

The magnitude of the discrepancies between these conflicting studies suggests the need to 
further investigate the robustness of the awareness detection results obtained with the 
chosen protocol. This is the main goal of our work, in which we tried to validate this detection 
method in aware subjects for which ground truth is known. More specifically, we analyzed the 
sensitivity of the protocol with respect to changes in the electrodes density, signal extraction 
technique used, choice of training-testing/cross-validation routines, and hypotheses evoked 
in the statistical tests that assess the significance of the obtained classification accuracies.  

We assume in our work that only an awareness detection method that exhibits good 
performance when applied to fully aware subjects is likely to function properly in the detection 
of covert awareness. We hence replicated the EEG studies in (1,2) using a group comprising 
20 healthy volunteers. The findings that we describe later on in the paper evidence a high 
variability in the obtained results but allow us to make specific recommendations for the 
design of improved protocols and better performing signal treatment techniques. 

 

2.- Description of the study 

2.1.- Protocol and participants 

The participants were 20 neurologically healthy adults (11 female; 9 male) aged between 25 
and 66 (mean 35.6). All the subjects were verified to be aware at the time of performing the 
task. The local ethical committee approved this study and all participants provided written 
informed consents. 

The same command-following protocol as in (1) was replicated. Each volunteer had to 
perform mental imagery tasks of two types: (i) the right-hand task in which the subject has to 
imagine squeezing the right hand into a fist and then to relax it each time that a beep sounds, 
and (ii) the toes task, for which the instruction was to imagine wiggling the toes in both feet 
and then to relax them after a beep is heard. The pertinence of this imagery task in 
awareness detection is based on the results of numerous studies that show that, depending 
on the instruction, a sensorimotor cortical activity synchronization or desynchronization is 



observed in the mu (8Hz-12Hz) and beta (13-30 Hz) bands (see (10–15) and references 
therein). 

The experiment was carried out using a specific block structure. Each block contained 15 
trials in during which the participants were completing the same imagery task. Each subject 
performed a total of 8 blocks of command-following tasks (4 blocks for the right-hand task 
and 4 blocks for the toes task) presented in a pseudorandomized order. A break was 
provided to participants before the onset of the next block. Each block was preceded by an 
auditory presentation of instructions explaining the task to be performed during the whole 
block each time that the participant would hear a beep. The 15 tones of each block were 
presented binaurally (600 Hz, 60 ms duration) with an inter-stimulus interval varying 
randomly between 4.5 and 9.5 seconds. The approximate average duration of the whole 
experiment for each participant was 120 minutes. 

 

2.2.- Data acquisition and preprocessing 

EEG signals were recorded using an OSG digital equipment (BrainRT; OSG bvba, Rumst, 
Belgium) with two Schwarzer AHNS epas 44 channels amplifiers (Natus, Munich, Germany). 
The signals were recorded with 64 electrodes at the positions of the 10/10 system using a 64 
channel electrode cap (Easycap, EasycapGmbh, Ammersee, Germany); one of these 
electrodes was dedicated to the detection of ocular activity and was not directly used in the 
EEG signal acquisition. The sampling frequency was 1000 Hz. Data was high-pass filtered at 
0.27Hz and no low-pass filter was applied. Signal preprocessing was carried out using the 
Cartool Software (http://brainmapping.unige.ch/Cartool.php). The EEG recordings consisted 
of 5500 ms long epochs that comprised 1500 ms of pre-stimulus and 4000 ms of post-
stimulus signal that were extracted for each trial and participant. The baseline was defined 
using the 500 ms period preceeding the stimulus onset. Individual data were then 
recalculated against the average reference and band-pass-filtered to the frequency range 1-
40 Hz. An automatic artifact detection procedure was then applied within the time period of 
interest that removed trials where an amplitude of more than 100 µV was present in at least 
one of the electrodes. Subsequently, the trials were visually inspected to remove eye blinks, 
movements, and muscular artifacts. Missing data due to artifacts were interpolated using a 3-
dimensional spline algorithm (the average percentage of interpolated electrodes was 6.25%). 
The average number (±SE) of trials per subject accepted for the analysis was 110.4±6.3. The 
data used to conduct the study is available from the authors upon request. 

2.3.- Signal extraction techniques under consideration 

Three different signal extraction techniques, implemented via custom scripts in Matlab, were 
put to the test: 

• Fourier analysis based technique: for comparison purposes, the method proposed in 
the original study (1) was reproduced. More specifically, among all the 63 cap electrodes 
only 18, that covered the motor area of the brain, were selected, namely: FC3, FC1, FC2, 
FC4, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6. Then, the 
acquired data signals were resampled at 100 Hz. The FFT (Fast Fourier Transform) 
coefficients were computed for the signals coming from each of the selected electrodes in 
the range between 7 and 30 Hz with a resolution of 0.39 Hz and using a sliding window of 



1 s width with a resolution of 0.01 s. Since for each trial the tone was set at 1.5 s, the 
center of the first window was chosen at 2 s and for the last one at 5 s. A Hamming 
function was used before the estimation of each FFT. For each window we computed the 
average log-power values (natural logarithm of the absolute values of the FFT 
coefficients) over the four following frequency ranges: 7-13Hz, 13-19 Hz, 19-25Hz, and 
25-30Hz. Finally, these average log-power values were normalized by using their mean 
and standard deviation across all windows, trials, and channels for a given subject; these 
normalized values were subsequently used in the classification procedure that we 
describe in detail in Section 2.4.  
 

• Extraction using parametric time series models: this technique is customary in the 
construction of some brain computer interfaces (16–21). In our study, the EEG signals 
were extracted by fitting to them order three autoregressive models AR(3) (22). The 
resulting set of model coefficients (without the variance of the model driving noise) was 
subsequently used in the classification task. This approach was implemented using the 
signal coming from the 63 electrodes with a sampling frequency of 100 Hz. The whole 
sample comprising 5.5 s worth of signal was used for the estimation of the 63 sets of 
AR(3) coefficients. 
 

• Wavelets based technique: this is another standard approach that is particularly well 
adapted to the non-stationary nature of the EEG signals. Examples of good results with 
this method in the EEG context can be found, for example, in (17,23–26) and references 
therein. In our experiment a wavelets based extraction was implemented by using the 
signals coming from the 63 electrodes and sampled at 100 Hz. For each channel, the 
wavelets expansion in terms of the Morlet family of the total sample length (5.5 s) were 
computed and the coefficients corresponding to a frequencies interval of 1-30 Hz with a 
frequency step of 0.25 Hz and a time step of 0.01 s were kept. The absolute values of 
these coefficients were then averaged on frequency ranges and sliding temporal windows 
identical to those used with the Fourier based technique. The frequency averaged 
coefficients for all the temporal windows and all the channels were used in the 
classification task. It is worth mentioning that other wavelet families were also considered 
but it is the Morlet one that offered the best performance. 

 

2.4.- Classification: training-testing and cross-validation design  

The classification of the trials for each of volunteers was carried out using a support vector 
machine (SVM) with a linear kernel. As in any machine learning procedure, the classification 
was implemented by splitting the available data into two sets. The first one, called training 
set, was used for the estimation of the SVM parameters (in other words, for training the SVM 
classifier) and the second one, called testing set, was put aside to evaluate the classification 
performance. The global accuracy of the classification was determined via a cross-validation 
strategy in which the performance was computed by averaging over different choices of 
partitions of the available trials into training and testing sets.  

The data fed to the SVM was a concatenation of the different sets of parameters obtained for 
each trial after signal extraction (see Section 2.3), individually marked as belonging to one of 
the two classes of imagery tasks: squeezing the right hand into fist or wiggling the toes. All 



the necessary procedures and data manipulations necessary for the classification task were 
implemented using custom scripts in Matlab. 

The cross-validation design appears to be a delicate issue in this context. As it has already 
been pointed out in (2), the temporal dependence between the test-set blocks has an 
important influence on the evaluation of the classification accuracy. In the original work (1) 
the choice of the training and testing sets was done in the following way: two adjacent blocks 
of different types (one with right-hand imagery and one with toes imagery) were used for the 
testing data and the trials included in the remaining blocks served as the training set. The 
global classification accuracy was computed by averaging over all the available different 
combinations of distinct adjacent blocks in the testing phase. However, it was noticed in (8) 
that when the blocks used for testing are not contiguous anymore and the distance between 
them increases, the classification performance severely declines.  

These findings showed the sensitivity of the evaluation accuracy with respect to the design of 
the cross-validation. In order to further study this phenomenon, we considered several 
training-testing block configurations and we also studied the impact of breaking the block 
structure by carrying out the cross-validation with randomized individual trials and not only 
blocks. More precisely, two types of cross-validation procedures were implemented: 

(i) Block-based approach: it involves the randomization of entire blocks. 
(ii) Trial-based strategy: the block structure is not preserved and single trials are 

randomly permuted. 

For these two families of cross-validation routines we also studied the influence of respecting 
the chronology in the training-testing. More specifically, for the block-based approach three 
main configurations were considered  (tests 1, 2, and 3 in the tables): 

• Test 1: the testing set for the classification task consists of pairs of consecutive blocks of 
different types; the training set is made of the remaining blocks. This is the technique 
proposed in (1). 

• Test 2: the testing set consists of pairs of blocks of different types, not necessarily 
consecutive; the training set is constructed out of the remaining blocks. This is analogous 
to the technique proposed in (2). 

• Test 3: the training set is enlarged each time following the chronological order with two 
consecutive blocks of different types; the testing set is constructed using the two blocks 
that chronologically follow the blocks in the training set. We emphasize that in this case 
the chronological order is preserved both in the training and the testing data samples. 
 

Regarding the trial-based strategy, we considered the following four configurations (tests 4, 
5, and 6 in the tables): 
 
• Test 4: the initial training set for the classification task consists of the first 20 trials; the 

testing set is the following trial (21st). The training set is then enlarged by one trial and 
the testing set is the following trial (22nd) and so on. The chronological order is preserved 
in the training-testing. 

• Test 5: the training sets for the classification task are constructed with a sliding window 
containing 50 trials; the testing sets consist of single trials following each of the windows. 
The chronological order is preserved in the training-testing.  



• Test 6: the trials are all randomly permuted and split into four groups. Each of these four 
groups is taken as testing set for the classification task while the remaining trials are used 
for the training. The average accuracy rate is obtained by repeating this operation 1000 
times. The chronological order is hence not preserved in the training-testing. 
 

2.5.- Statistical analysis and significance of the results 
 
The ability of a given subject to adequately perform the requested imagery task is assessed 
by conducting a statistical test on the signal classification results whose H0 hypothesis is that 
the classification accuracy is 50%. The original study (1) invokes an independence 
hypothesis between trials (and hence between blocks) that allows the authors to declare that 
the number of correct answers follows under the null a binomial distribution with parameters 
0.5 and the number of trials. As we discuss in detail later on and as it is already pointed out 
in (2), this independence hypothesis is empirically violated. We hence find it more 
appropriate to use a permutation test that consists of constructing an empirical distribution of 
accuracies evaluated for the different possible relabelings of the tasks associated to the 
blocks or the individual trials, depending on the type of cross-validation approach followed for 
each subject (see Section 2.4). With such a test, the probability of obtaining a better 
classification accuracy than the one attained when using the right labels serves as a sign of 
lack of statistical significance. Additionally, we apply a correction with respect to the false 
discovery rate (FDR) to the p-values coming from the permutation test (27). Even though for 
some of the cross-validation configurations the empirical distribution is constructed with a 
limited number of permutations, no unjustified independence hypotheses were invoked.  
 

3.- Results 

The results presented in Tables I and II show a considerable variability of the classification 
accuracy and of the statistical significance of the results with respect to modifications in the 
signal extraction technique and the cross-validation strategy. For example, the methods 
proposed in (1) (see the first column for Test 1 in Table I) produced, with the 20 subjects that 
participated in our study, a mean classification accuracy of 61.4% which allows us, using the 
FDR corrected permutation test to state that 65% (or 60% with the binomial test in that 
reference, not reported in the tables) of them were able to adequately perform the requested 
imagery task at the alpha=0.05 level. The corrections in the cross-validation design proposed 
in (2) make these figures (see the first column for Test 2 in Table I) dramatically drop to 
55.8% and 15%, respectively. The differences that we just described regarding two specific 
methods are prevalent across all the tests carried out and techniques used.  

---TABLES I AND II AROUND HERE--- 

The predominant results established in the study are: 

Variability of the results with respect to the choice of cross-validation strategy. The 
results of the experiments indicate that the temporal dependence between the trials and 
between the blocks influences considerably the performance of the classification task. 
Indeed, the cross-validation design corresponding to the trial-based approach (tests 4, 5, and 
6) substantially outperforms the block-based strategy (tests 1, 2, and 3). The best average 
accuracy rate obtained when respecting the blocks is 61.4% (Test 1 using the Fourier signal 



extraction technique in (1)), while using a trial-based cross-validation we can reach 
classification performances up to 86.3% (Test 6 with AR(3) signal extraction). The same 
conclusion is drawn regarding the percentage of individuals whose classification performance 
indicates that they have successfully carried out the imagery task. According to the FDR 
corrected permutation test (alpha=0.05), the best result obtained when respecting the block 
structure is 65% (Test 1 with Fourier signal extraction) versus the 100% attained when using 
individual trials in several tests (Table II).  

This phenomenon is due to the fact that individual trials are more statistically dependent 
within a block than across blocks. Indeed, as in the experiments 4, 5, and 6, the training and 
the testing sets are both likely to contain trials that are different but that belong to a same 
given block, the intra-block dependence would explain why the classification accuracy is 
higher.  

Additionally, notice that the accuracy rates obtained in tests 4 and 5 are similar. The only 
difference between these two tests is that the training set in test 4 contains all the available 
past trials while in the case of test 5 it incorporates only the most recent 50 trials. The testing 
set for both instances includes one trial that chronologically follows the ones used for the 
training. The fact that including all the previous trials in test 4 does not help in improving the 
accuracy rate indicates that it is the dependence associated to the proximity between trials 
used in the training and the testing sets that is influential in obtaining a good performance. 

--FIGURE 1 AROUND HERE-- 

In order to further explore this line of reasoning, we studied the changes of the classification 
accuracy when the training and testing sets contain or not trials that come from the same 
block. To be more specific, we start by taking as training set the first 35 trials for each subject 
and we then evaluate the classification accuracy using as testing set the trial number 36; 
next, we construct the training sample using the trials with numbers 2 to 36 and measure the 
accuracy rate with the trial number 37. We continue this procedure until we run out of trials. 
The graphs in Figure 1 represent the evolution of the classification error according to this 
construction for three different subjects and the three signal extraction techniques 
considered. The red bars in the graphs correspond to the first trial of each block and, in order 
to make the representation less volatile, each marker indicates the average classification 
error over the next 10 trials; for example, the marker at the position 36 indicates the average 
error obtained when classifying the trials from 36 to 45. In many instances, it is visible in 
these graphs that the classification error decreases right after the red bars. This 
phenomenon supports the intra-block dependence thesis because the markers in those 
positions have been computed using classification experiments that incorporate, 
simultaneously in the training and the testing sets, trials coming from a same given block. 

Variability of the results with respect to the signal extraction technique, the EEG 
density, and its relation with the cross-validation. Our results show that the pertinence of 
a given signal extraction technique depends on the cross-validation scheme used. Indeed, 
the figures in the tables indicate that Fourier based methods are more appropriate than the 
AR(3) approach when working at the block level and, conversely, when we use individual 
trials in the cross-validation, the AR(3) models produce excellent performances that leave 
Fourier methods far behind. For example, even though the accuracies in the Test 1 obtained 
with the Fourier based technique and the AR(3) method are quite close (61.4% and 57.8%, 
respectively) the percentages of individuals whose performance of the requested task is 



statistically significant according to the FDR corrected permutation test (alpha=0.05) are 
dramatically different, namely 65% and 10%, respectively. In contrast, these percentages go 
up to 85% and 100% in the trial-based Test 6 with associated average classification 
accuracies of 67.6% and 86.3%, respectively. Wavelets based extraction appears as a 
compromise between the Fourier and the AR(3) techniques.  

It is worth mentioning that various other approaches to signal extraction were tested. We do 
not report the results obtained since they do not provide significant improvements. For 
example, in the context of the Fourier based techniques, we worked with the original 
sampling (1 KHz) of the signals with no resampling at 100 Hz, we used the absolute values 
of the spectrum instead of the log-power values in the classification, and we tried various 
high and low-pass frequency filters. As to the parametric time series approach, apart from the 
AR(3) model that we report on, we tested several other families: univariate ARMA 
(Autoregressive Moving Average (22)) and ARMA-GARCH (Autoregressive Moving Average 
– Generalized Autoregressive Conditional Heteroskedasticity (28)) processes as well as 
multivariate DCC (Dynamic Conditional Correlation (29)) type parametric models. Among all 
the tested specifications the autoregressive model AR(3) of order three demonstrated the 
best overall performance in the processing of the EEGs of the twenty available subjects. 

--FIGURE 2 AROUND HERE-- 

The pertinence of a given EEG density seems also to be related to the cross-validation 
scheme used. Figure 2 shows the classification accuracy rates obtained for the different 
subjects when carrying out Test 1 (block-based cross validation) and Test 6 (trial-based 
cross validation) using the signal extraction techniques that prove to be the most successful 
for those experiments. The results show that the use of 63 electrodes systematically 
outperforms the 18 electrodes approach for trial-based cross validation schemes (this result 
is in agreement with the conclusions in (7)) and that the situation is right the opposite for 
block-based cross validation schemes. Unreported results show that this conclusion is 
independent of the signal extraction technique used. 

Finally, we note that the preservation of the chronological order in the training-testing 
routines and in the associated cross-validation schemes has a weaker influence on the 
results than breaking or not the block structure.  

 

 4.- Discussion and recommendations 

The goal of the replication of the protocol introduced in (1) and carried out in this paper was 
settling the debate about its validity in (2,9). The main criticism in (2) had to do with the 
correctness of the statistical analysis method used. The authors of the original study replied 
that their approach was certainly less conservative than the one proposed in (2) and argued 
about its pertinence in the evaluation of the presence of residual consciousness. 

In that context, our results allow us to draw two main conclusions: 1) even when using the 
most advantageous statistical analysis methods, it is impossible to obtain perfect 
discrimination between tasks for all the subjects with the protocol proposed in (1). 2) This 
lack of performance prevails when using alternative signal extraction techniques and cross-
validation strategies. These statements and the results that justify them allow us to formulate 



suggestions on how to design future EEG mental imagery tasks to be used in unresponsive 
patients. We now discuss them. 

A first point that needs to be understood is why no signal detection method leads to a perfect 
detection of awareness in all healthy participants whereas impressive results have been 
found with the same tasks in brain computer interface (BCI) protocols. An explanation for this 
apparent contradiction is that in BCI research, the discrimination between both imagery tasks 
is usually obtained after a long training period, which is not possible with unresponsive 
patients. Furthermore, as pointed out in (1), even after training the detection procedure does 
not still produce satisfactory results for a small proportion of subjects that are declared to be 
“BCI illiterates” (30). One can thus question the validity of using mental imagery with 
unresponsive patients. These patients may be able to understand but not to effectively 
perform the tasks for a variety of reasons.  

Concerning the inconsistencies of the study design, we give strong evidence for the 
presence of intrablock dependence between trials, which poses a serious problem when 
using SVM as classification method. We recall that any machine learning based classification 
technique calls for an optimized similarity between the trials included in the training and 
testing sets. In the protocol that we implemented in this study, this resemblance takes place 
mainly among the trials inside a given block, probably due to the fact that the subjects know 
in advance that the same task has to be carried out for the entire duration of the block. This 
argument explains why the performance of the tests with a block-based cross-validation 
(experiments 1-3) is significantly lower than those that mix trials coming from different blocks 
(experiments 4-6). Recent mental imagery protocols that randomize the trials have shown 
performance improvements (7) but larger scale studies need to be implemented in order to 
confirm the pertinence of this approach.   

In view of what we just discussed we propose three specific modifications in the experimental 
design that could improve the signal detection in unresponsive patients 

1- Changing the tasks execution chronology. Our results evidence that the suppression 
of intrablock dependence is a prerequisite for the success of any future study on 
unresponsive patients. The intrablock dependence strongly alters the value of the 
data for machine learning classification, regardless the signal detection method used.  

2- Changing the tasks themselves. Mental imagery protocols have shown good 
performances in the context of fMRI and BCI research; our results suggest that they 
might not be the most appropriate for EEG based evaluation of patients’ 
consciousness. Other protocols used to measure awareness in unresponsive patients 
propose to focus rather on their attention abilities (8,31); promising results have been 
obtained with healthy volunteers and patients but a replication of such designs on a 
larger scale needs to be performed before considering them for use in clinical practice  

3- Changing the emotional valence of stimuli to improve detection. An improvement of 
detection performances has been obtained when subjects had to imagine playing 
guitar rather than squeezing the right hand (32). Furthermore, performances were 
also improved when these subjects were familiar with this musical instrument. This 
research approach thus appears to be promising in order to evaluate patients’ 
awareness, even though the specific familiarity of the unresponsive patient to be 
tested with the proposed tasks will be highly influential.  



Conclusions and recommendations. The results of our study evidence excessive 
sensitivity of the mental awareness detection protocol introduced in (1) with respect to 
changes in the electrodes density, signal extraction technique used, training-testing/cross-
validation routines, and hypotheses evoked in the statistical tests that assess the significance 
of the obtained classification accuracies. This feature has been observed when the protocol 
has been implemented with fully aware healthy volunteers.  

The dramatic contrast in performances obtained with the various signal extraction methods 
and cross-validation designs shows very plausible intra-block dependence between trials that 
makes the experimental protocol inadequate for subsequent machine learning based 
classification.  

In conclusion, our findings illustrate the difficulty of capturing awareness in fully aware 
healthy subjects with the EEG based protocols proposed so far and advise caution in their 
use at the time of detecting covert awareness in unresponsive patients. It is our opinion that 
as long as new classification techniques and clinical protocols that robustly detect awareness 
on healthy volunteers are not available, the use of EEG paradigms should be restricted to the 
evaluation of low-level cognitive processes at the patients’ bedside. Only subjects showing 
signs of preserved cognitive functions would then benefit from a more expensive and 
complex fMRI evaluation.  
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Caption for Figure 1: evolution of the classification error for three different subjects and the 
three signal extraction techniques considered as the training and testing sets are shifted by 
one trial according to the description in Section 4. The red bars in the graphs correspond to 
the first trial of each block. Each marker indicates the average classification error over the 
next 10 trials. 
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Caption for Figure 2: classification accuracy rates obtained for the different subjects when 
carrying out Test 1 (block-based cross validation) and Test 6 (trial-based cross validation) 
with 63 and 18 electrodes. 
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Caption for the tables: classification accuracy rates for the 20 healthy and aware subjects 
that took part in the study obtained by using each of the three EEG signal extraction 
techniques introduced in Section 2.3. Table I provides the results for tests 1, 2, and 3 in 
Section 2.4 that correspond to the block-based cross-validation design, and Table II reports 
on the tests 4, 5, and 6 that use trial-based cross-validation strategies. The row that follows 
the 20th subject provides the mean accuracy rate across the 20 subjects. The cells with 
colored background correspond to accuracy rates for which the p-values for the statistical 
test in Section 2.5 are smaller than the chosen significance level alpha=0.05 and for which 
we consider that the imagery task has been adequately performed. The row with caption 
“Success” reports the percentage of such accuracy rates for a given test and signal 
extraction technique. 
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