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Abstract

Multivariate volatility models are widely used in the description of the dynamics of time-
varying asset correlations and covariances. Among the well-known drawbacks of many of
these parametric families one can name the so called curse of dimensionality and the non-
linear parameter constraints that need to be imposed at the time of estimation and that
are di�cult to handle. In this paper we use a Bregman divergences based optimization
technique to tackle the quasi-maximum likelihood (QML) estimation of the DVEC (Di-
agonal VEC) family for various non-scalar specifications. Additionally, we implement a
composite likelihood (CL) method to estimate several non-scalar DCC and DVEC model
specifications. The use of the CL approach motivates the in-depth study of di↵erent model
reduction questions and the analysis of the closedness of the considered families under the
reduction operation. The availability of both the QML and CL estimation tools makes
possible the empirical out-of-sample performance comparison of the non-scalar DCC and
DVEC models under study. We discuss an important estimation bias issue related to the
use of covariance targeting and its impact on the empirical performance of the considered
multivariate volatility models.
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1 Introduction

Many practical problems that arise in the areas of portfolio and risk management motivate the
study and development of multivariate volatility models that, apart from being manageable and
empirically e↵ective, allow for a better understanding of the dynamics behind the time-varying
conditional covariances and correlations of asset returns. This circumstance has motivated
extensive research in this direction in recent years and has resulted in the emergence of a great
variety of dynamical models in the literature. Despite their diversity, the choice of a particular
model for a given specific task faced by practitioners remains an obstacle. The need of handling
a large number of assets and, at the same time, the absence of adequate estimation techniques
for high dimensional models with non-scalar specifications results in practice in the systematic
use of scalar simplified models which describe poorly the dynamics of the processes in question.

In this work we aim at four major goals: (i) put forward optimization techniques that would
allow for the constrained quasi-maximum likelihood (QML) estimation of richly parametrized
multivariate volatility models, (ii) improve the estimation of high dimensional models using the
composite likelihood (CL) estimator implemented via what we will call reduction procedures,
(iii) provide details as for the reduction of each of the non-scalar models of interest, and (iv)
address the question of the empirical performance of the estimated models and the possibility to
solve various problematic estimation issues documented in the literature by using the proposed
estimation techniques.

Among many available multivariate volatility models, the dynamic conditional correlation
(DCC) model developed in the works of Engle [Eng02] and Tse and Tsui [TT02] as a general-
ization of the constant conditional correlation (CCC) model of Bollerslev [Bol90], has become
a process of choice in the econometrics literature. This can be explained by several well-known
advantages of the DCC family like the availability of a two-step estimation procedure and the
possibility to use an approximate covariance targeting which makes them easy to use in the
presence of a high number of assets. We emphasize here that it is only the scalar specification
of this model (of one or both parameters) that up until now has been mostly discussed in the
literature as it is the only one for which the QML estimator has been implemented. The main
assumption underlying the use of this model is that the dynamical behavior of the conditional
correlation is the same for all the asset pairs, which is well-known to be empirically violated.

There exists a substantial literature (see for instance [HF09], [CES06], [BCG03, BCG06],
[FdR05]), [Pel06], [BC05], [CEG11], and [BO13]) where di↵erent modifications of the DCC
family are proposed in order to overcome the built-in rigidities of the scalar description. How-
ever, none of the listed references suggests findings that would allow to handle the DCC models
with the general matrix Hadamard-type model parameterizations originally proposed by Engle
in [Eng02] or other richer specifications.

In [BGO15] we carefully addressed this issue by providing adequate estimation tools for
several non-scalar DCC models and by empirically studying how these richer parameterizations
perform with respect to each other and with respect to the scalar model. Our main conclusions
were that the estimation of these models is practically feasible in high dimensions and that the
subsequent comparative assessment of the empirical performance of the estimated non-scalar
models for a particular dataset can be used as a template for the model choice depending on
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the practical task of interest. At the same time we evidenced that the richer parametrized DCC
models su↵er from various issues already reported for the scalar specification like, for example,
an estimation bias in the model parameters that becomes more visible with the increase of the
assets dimension, irrespective of the type of the model prescription considered. This problem
has been fixed by Aielli in [Aie13] by modifying the model prescription in such a way that
the approximate and statistically inconsistent targeting procedure associated to DCC (see the
papers by Caporin and McAleer [CM12]) becomes exact.

In relation with this problem, in this work we address the following questions: (i) whether
other non-scalar multivariate volatility families of models that have a one-stage estimation
procedure and direct covariance targeting can propose a better performance; (ii) if the bias
presence issue for the non-scalar DCC models can be eliminated or at least reduced by using the
composite likelihood estimation method which has already proved to improve the quality of the
parameter estimation in the context of high dimensional scalar multivariate volatility models;
(iii) which of the model families under study, in general, and what parameter specifications, in
particular, combined with one of the considered estimation techniques, namely QML or CL,
shows the best empirical performance.

In order to tackle the first question, we consider, apart from the DCC model recalled
in Section 2.1, the Diagonal VEC (DVEC) dynamical model for the conditional covariance
process first introduced by Bollerslev in [BEW88]. This model (see Section 2.2 for its detailed
description) directly prescribes the dynamics of the conditional covariance matrix process by
using iteratively its lagged values and the values of the lagged asset returns. Unlike in the DCC
situation, DVEC estimation is handled in one stage and the covariance targeting implemented
beforehand is not approximate. In Section B we make explicit the QML estimation for non-
scalar DVEC models, deliver explicit formulas for the gradient of the associated log-likelihood
function and refer the reader to the paper [BGO15] when the results in the DVEC context are
identical to those already provided for the DCC family.

In order to tackle (ii) we consider the so called composite likelihood (CL) estimation method.
This approach consists, roughly speaking, in using an approximation of the joint marginal den-
sity based on lower dimensional marginal densities. This idea was introduced by Lindsay [Lin88]
and produces an estimator which is shown to be potentially more robust to misspecification
issues which are of great importance when dealing with high dimensional models. CL esti-
mation has been extensively discussed in literature over the years (see for instance the papers
[VHsS05, ZJ05, VV05, Var08, XR11, PSS11, LYS11, VRF11, WYZ13] and references therein).
We use the theoretical framework introduced in [PESS14] for in the context of multivari-
ate volatility models. This reference contains all the relevant proofs for the consistency and
asymptotic normality of the concentrated (or profile) likelihood estimator in the presence of
incidental parameters and we hence do not need to provide here any details concerning CL
estimation theory.

We implement the composite likelihood estimation method (see Section 3) for both the DCC
and DVEC models via the construction of the reduced models for the each composite assets
subset. We show in detail in Section 4 that various parameterizations of both the (semi-strong)
DCC and the DVEC families are closed under the reduction procedure. This approach provides
us with an e�cient way to use previous knowledge about the scores associated to each of the
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reduced models in order to formulate the optimization problem associated to their optimization
and hence to solve it using the same Bregman divergences based technique presented in [CO14,
BGO15].

Regarding (iii), we use a real dataset in order to empirically assess the out-of-sample per-
formance of all the models under consideration estimated either with the QML or with the CL
methods. In Section 5 we provide evidence of the fact that the composite likelihood method
indeed allows us to improve the quality of the estimation for non-scalar models of both types
by solving in part estimation bias issue. At the same time we conclude that the question of
giving preference to one or another class of models has to be treated with caution since the
results can be di↵erent depending on the dataset and the applications considered.

Mention the supplementary online appendix (called SoA) that contains technical details
and additional empirical results.

2 Multivariate GARCH: DCC and DVEC models

Consider the n-dimensional conditionally heteroscedastic discrete-time process {r
t

} defined by:

r
t

|F
t�1 ⇠ N(0

n

, H
t

), t = 1, 2, . . . , T, (2.1)

where for each t 2 N, H
t

is a positive semidefinite symmetric (PSDS) matrix that is F
t�1-

measurable, F
t�1 := � (r

1

, . . . , r
t�1) being the information set generated by {r

1

, . . . , r
t�1}.

Thus, H
t

is the conditional covariance matrix of r
t

(a vector of returns), that is, Cov(r
t

|F
t�1) =

H
t

.
Di↵erent families of multivariate GARCH (MGARCH) models di↵er in the way in which

the dynamics of the conditional covariance matrix process {H
t

} is prescribed. For an extensive
overview of most of the existing MGARCH models see, for example, [BLR06] and ???Silven-
noinen and Terasvirta(200?). Among MGARCH models, one may distinguish two main classes.
The first type prescribes the behavior of the conditional covariance matrix process by specifying
GARCH processes for the conditional variances and a dynamic process for the conditional cor-
relations of the “deGARCHed” returns [Eng09]. The second group of models directly specifies
the dynamics of the conditional variances and covariances as functions of their lagged values
and the lagged values of the asset returns. In this work, we focus on a wide subset of the
first class, namely the Dynamic Conditional Correlation (DCC) models, and on a particular
sub-class of the second, namely the Diagonal VEC (DVEC) models. In the following subsec-
tions, we define the general DCC and DVEC setups and the specific parameterizations that we
use, together with su�cient parametric restrictions that guarantee the stationarity of the joint
process {r

t

, H
t

} and ensure that for all t the matrix H
t

is PSDS.

2.1 The Dynamical Conditional Correlation model

The DCC model class was introduced by [Eng02]. It has become very popular in the multivari-
ate GARCH applied literature, especially in its scalar version, due to the possibility of carrying
out estimation using a two-stage procedure. This procedure, together with the availability of
an approximate correlation targeting one, makes DCC models applicable and performant in
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various empirical applications in the context of risk and portfolio management for more than
a handful of assets; see, for example, EXTEND LIST: [BCG03, BO13]. The main idea in
constructing a DCC model consists in specifying the evolution of the conditional covariance
matrix process {H

t

} through the conditional variances and subsequently a conditional correla-
tion matrix process. The first step produces the so-called “deGARCHed” return vector "

t

2 Rn

for each t 2 {1, . . . , T} via the component-wise assignment "
i,t

:= r
i,t

/�
i,t

, where the condi-
tional variances �2

i,t

of each component r
i,t

of r
t

are obtained by fitting a stationary univariate
GARCH model, for example the GARCH(1,1) model of [Bol86]. Let D

t

:= diag (�
1,t

, . . . ,�
n,t

)
denote the corresponding diagonal matrix of conditional standard deviations.

The second step of the DCC model construction specifies the dynamics of the conditional
correlation matrix R

t

of the degarched returns "
t

, embodied in the relation H
t

= D
t

R
t

D
t

as:

R
t

= Q
⇤�1/2
t

Q
t

Q
⇤�1/2
t

, Q⇤
t

:= Diag(Q
t

) = I
n

�Q
t

, (2.2)

Q
t

= (i
n

i>
n

�A�B)�Q+A� ("
t�1"

>
t�1) +B �Q

t�1, (2.3)

where the parameter matrices A and B are symmetric of order n, Q is a PSDS parameter
matrix of order n, and i

n

is the column vector of n elements all equal to unity. Equation (2.3)
is the most general prescription proposed by [Eng02]. It is reduced to a scalar model when all
the elements of A are identical and likewise those of B.

The correlation targeting procedure mentioned above consists in assuming thatQ = E
⇥

"
t

">
t

⇤

and can thus be estimated by Q̂ :=
P

T

t=1

"
t

">
t

/T prior to estimating A and B. Despite the

fact that Q is not equal to the second moment matrix of "
t

, and as a consequence, Q̂ is not a
consistent estimator of Q (see [Aie13]), the described targeting procedure is used in almost all
applications of the DCC model. For this reason, we proceed under this targeting procedure,
which, according to simulation results in [Aie13], does not lead to strong biases in practice.

In order to guarantee the stationarity of the joint process {r
t

, H
t

} and to ensure that the
matrix H

t

= D
t

R
t

D
t

is PSDS, the following su�cient conditions on the parameters A and B
are imposed (see [BGO15] for the details):

(PSD) Positivity constraints:

A ⌫ 0, B ⌫ 0,
⇣

i
n

i>
n

�A�B
⌘

� S � 0, and Q
0

⌫ 0, (2.4)

where Q
0

is the initial value in the iterative equation (2.3), and A ⌫ (�)0 means that A is
PSD (strictly PSD). As it is shown in Proposition 2.1 of [BGO15], these positive definiteness
conditions do not only imply the positivity of {H

t

}, but also that

|A
ij

+B
ij

| < 1, j  i 2 {1, . . . , n} . (2.5)

The latter set of conditions is usually associated to the existence of stationary solutions for the
DCC process, even though there is no proof that it actually guarantees that property. Such
proof is only available for the cDCC model of [Aie13]. Notice that the conditions (2.5) need
to be imposed in addition to the (PSD) constraints if Q is not targeted but estimated jointly
with the other parameters.
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2.2 The Diagonal VEC model

The DVEC family of MGARCH models was introduced by Bollerslev in [BEW88]. DVEC is
a multivariate generalization of the GARCH process [Bol86], which is obtained as a particular
case of the VEC model in [BEW88]. DVEC is much more parsimonious in parameters than
VEC, and in this respect it is comparable to DCC even if the latter is a little less parsimonious
that DVEC. The DVEC dynamic equation for H

t

is specified by the recursive relation:

H
t

= (i
n

i>
n

�A�B)� S +A� (r
t�1r

>
t�1) +B �H

t�1, (2.6)

where the parameter matrices A and B are symmetric of order n, and S is a PSDS parameter
matrix of order n. In this model, S is equal to E

⇥

r
t

r>
t

⇤

provided that the expectation exists,

so that a consistent targeting estimator of S is given by Ŝ =
P

T

t=1

r
t

r>
t

/T . This consistent
targeting procedure will be used in the sequel of this article.

The stationarity of the joint process {r
t

, H
t

}, hence the existence of E
⇥

r
t

r>
t

⇤

), and the
positive definiteness of the elements of {H

t

} are guaranteed if the following su�cient conditions
on the parameters A and B are satisfied:

(PSD) Positivity constraints:

A ⌫ 0, B ⌫ 0,
⇣

i
n

i>
n

�A�B
⌘

� S � 0, and H
0

⌫ 0, (2.7)

where H
0

is the initializing value in the iterative equation (2.6). These conditions imply by
Proposition 2.1 in [BGO15] that |A

ij

+ B
ij

| < 1, j  i 2 {1, . . . , n} which, in turn, guarantee
the stationarity of the process {r

t

}.

2.3 Particular DVEC and DCC subfamilies and associated constraints

We make use of four specific parametrization of symmetric matrices in the DCC and DVEC
setups, namely, the Hadamard, the rank one, the Almon, and the scalar versions. For a detailed
discussion of the considered models in the DCC case we refer the reader to [BGO15]. We adopt
the same conventions for the DVEC family. Since the dynamic equations of Q

t

in the case of
the DCC model and of H

t

in the case of the DVEC model are formally similar, we use in
this subsection the symbols K

t

, K, and ⇢
t

to denote either Q
t

, Q, and "
t

for DCC, or H
t

,
S, and r

t

for DVEC. Each paragraph of this subsection contains the dynamic equation for K
t

in terms of an intrinsic set of parameters, and the associated constraints on these parameters
which ensure that the (PSD) constraints stated in the previous subsections are satisfied. In
two cases, identification constraints are also needed.

2.3.1 Hadamard model

The symmetric matrices A and B in (2.3) can be parametrized with (a, b) 2 RN ⇥ RN , where
N = 1

2

n (n+ 1), by setting A := math (a) and B := math (b). The operator math : RN �! S
n

is the inverse of the vech operator that stacks the elements on and below the main diagonal of a
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symmetric matrix of order n into a vector of length N . Using a and b as intrinsic parameters,
the Hadamard prescription of the DCC model is

K
t

= (i
n

i>
n

�math(a)�math(b))�K +math(a)� (⇢
t�1⇢

>
t�1) + math(b)�K

t�1 (2.8)

In terms of the intrinsic parameters, the parameter constraints are:

(PSD) Positivity constraints:

math (a) ⌫ 0, math (b) ⌫ 0,
⇣

i
n

i>
n

�math (a)�math (b)
⌘

� S � 0, and K
0

⌫ 0. (2.9)

2.3.2 Rank one model

In this version of the DCC model, the matrices A and B in (2.3) are assumed to have their rank
equal to unity. They are parametrized in terms of intrinsic parameter vectors a, b 2 Rn, such

that A := eaea>, B := ebeb
>
. In this notation the rank one model specification can be written as

K
t

= (i
n

i>
n

� eaea> � ebeb
>
)�K + (eaea>)� (⇢

t�1⇢
>
t�1) + (ebeb

>
)�K

t�1. (2.10)

For the model to be well identified, it su�ces to impose that one element of a and one of b are
positive. The constraints are:

(IC) Identification constraints:

a
1

> 0, b
1

> 0. (2.11)

(PSD) Positivity constraints:

(i
n

i>
n

� eA eA> � eB eB>)�K � 0, K
0

⌫ 0. (2.12)

2.3.3 Almon model

Given n 2 N and v 2 R3, the Almon lag operator alm
n

: R3 �! Rn generates a vector alm
n

(v)
whose entries are (alm

n

(v))
i

= v
1

+ exp(v
2

i + v
3

i2), i 2 {1, . . . , n}. Next, let a, b 2 R3 be the
intrinsic parameters and define ea := alm

n

(a), eb := alm
n

(b) 2 Rn. The parameter matrices

A,B in (2.3) can be written as A := eaea>, B := ebeb
>
, and hence the Almon model specification

is given by:

K
t

= (i
n

i>
n

� eaea> � ebeb
>
)�K + (eaea>)� (⇢

t�1⇢
>
t�1) + (ebeb

>
)�K

t�1. (2.13)

The corresponding constraints are:

(IC) Identification constraints:

ea
1

> 0, eb
1

> 0, i.e. a
1

+ exp(a
2

+ a
3

) > 0, b
1

+ exp(b
2

+ b
3

) > 0. (2.14)

(PSD) Positivity constraints:

(i
n

i>
n

� eaea> � ebeb
>
)�K � 0, K

0

⌫ 0. (2.15)
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2.3.4 Scalar model

The parameter matrices A,B in (2.3) are of the form A = ai
n

i>
n

, B = bi
n

i>
n

, with a, b 2 R
the intrinsic parameters. The scalar model prescription and the associated constraints can be
written as:

K
t

= (1� a� b)K + a ⇢
t�1⇢

>
t�1 + b K

t�1. (2.16)

(PSD) Positivity constraints:

a � 0, b � 0, a+ b < 1, K ⌫ 0, K
0

⌫ 0. (2.17)

3 Constrained composite likelihood estimation

The goal of this section is to provide an overview of the “composite likelihood (CL)” estimation
technique that we use for the DCC and DVEC models presented in the previous section, keeping
in mind that estimation is performed under the constraints exposed in that section. The CL
method is used and studied in [PESS14] for the scalar version of the DCC and BEKK models
(scalar BEKK is equivalent to scalar DCC) but it has not been used for the estimation of
non-scalar versions of these models. In the next section, we provide evidence of the theoretical
validity of applying CL estimation to non-scalar models and in Section 5 we show its empirical
relevance.5

To deal with the positivity (PSD) parameter constraints that substantially complicate the
estimation problem, especially in heavily parametrised model versions and when the number
of assets is more than a handful, we use the Bregman divergence based optimization technique
first introduced in [CO14] for the QML estimation of full VEC models, and extended to DCC
models in [BGO15]. This approach is working well to impose the constraints in QML estimation
and therefore we apply it also for CL estimation.

The construction of the composite likelihood function for a given sample of returns and
model requires first introducing the definition of a data subset or, equivalently, a reduced
vector of returns. Let r

t

2 Rn be a vector of n returns and let ⌃L be a selection matrix of
dimension d⇥ n for the d returns with labels L := {l

1

, . . . , l
d

}, defined as having entries

⌃L
ij

:= �
jli , i 2 {1, . . . , d} , j 2 {1, . . . , n} , (3.1)

where �
jli is Kronecker’s delta. Then the corresponding reduced vector is obtained as

rL
t

:= ⌃Lr
t

= ((r
t

)
l1 , . . . , (rt)ld)

> 2 Rd. (3.2)

5The CL method is based on the pseudo-likelihood in [Bes74] and the partial likelihood in [Cox75]. The
notion of composite likelihood was introduced by Lindsay in [Lin88]. The use of the composite likelihood
has received increasing attention in recent years due to its simplicity at the time of defining the objective
function and to its computational advantages when dealing with data with complex structure: see for instance
[KN00, ZJ05, FV06, DL09]). Reviews can be found in [Var08, VRF11, PSS11] and [Pak14]. We refer the reader
to [PESS14] for a detailed proof of the consistency and the asymptotic normality of the CL estimator in the
scalar models. Extending these results to non-scalar models is not our objective.
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Even though it is mainly the case d = 2 that is usually considered in practice, we formulate
in what follows the general case. The log-likelihood function associated to the reduced process
n

rL
t

, H
L
t

o

corresponding to the reduced vector rL
t

of d returns with labels L can be written as

logLL(⇥; rL) =
T

X

t=1

lL,t(⇥; rL
t

), (3.3)

where

lL,t(⇥; rL
t

) = �1

2

⇣

log(2⇡) + log det(HL
t

) + rL>
t

HL�1
t

rL
t

⌘

. (3.4)

Given N di↵erent sets of labels {L
1

, . . . ,L
N

} of returns, the corresponding composite likelihood
CL (⇥; r), where r denotes the relevant set of T observations is defined as

CL (⇥; r) :=
N

X

i=1

logLLi(⇥; rLi) =
T

X

t=1

N

X

i=1

lLi,t(⇥; rLi
t

). (3.5)

For example, when only the distinct pairs (d = 2) of asset returns are chosen to construct the
log-likelihood CL (⇥; r), this function is made of N := n(n � 1)/2 composite components of
the type logLLi(⇥; rLi).

In order to implement the Bregman based CL estimation, we use the analytical expression
of the gradient of the function CL (⇥; r), keeping in mind the dependence of ⇥ on the intrinsic
parameters (denoted generically by ✓) for each model specification. We proceed by noticing
that, by construction, each of the functions logLLi(⇥; rLi), i = {1, . . . , N} is associated to the
corresponding reduced sample rLi , as well as to the model that prescribes the dynamics of
the corresponding reduced matrix process {HLi

t

} obtained from the initial one via the use of
the particular selection matrix ⌃Li at each moment of time t. We refer to the operation that
transforms the process r to rLi as model reduction.

In the following section we study in detail the model reduction for the DCC and DVEC
families and we address the question of the closure of each of the specifications considered
under this procedure, as well as the question of how to optimally impose the constraints that
ensure that the resulting reduced model satisfies the positivity and stationarity requirements.
The findings in that section allow us to use the explicit expressions of the gradients of the
log-likelihood function provided in [BGO15] for the DCC models and in Proposition B.1 of

the SoA for the DVEC, in order to determine the gradients r
✓⌃Li logLLi(⇥; r⌃

Li ) of the log-

likelihood functions logLLi(⇥; r⌃
Li ), i = {1, . . . , N} with respect to the intrinsic parameters

✓⌃

Li corresponding to each reduced model. Having these results at hand, we can explicitly
formulate the functional connection between r

✓⌃Li logLLi(⇥; r⌃
Li ) and r✓logLLi(⇥; r⌃

Li ) for

each i = {1, . . . , N}, and hence r✓CL (⇥(✓); r) can be immediately obtained as the sum of
all the latter for each specification that remains closed under reduction. The implementation
of the CL estimation procedure is then identical to the QML one applicable to the initial non-
reduced models and briefly explained in Section B.2 of the SoA. For more details concerning
the Bregman divergences based constrained estimation, we refer the reader to [BGO15] and to
its Technical Appendix.
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4 Reduction of non-scalar DCC and DVEC models

Since the CL approach involves subsets of the data, one of the questions that needs to be
addressed in the case of non-scalar models is whether each of the models defined in Section 2
remains closed under such a reduction procedure. In this section we show that this is indeed the
case through two main propositions, one for the DCC family, and one for the DVEC family.
Additional results are provided in Section C of the SoA for each of the particular models
(Hadamard, rank one, and Almon) of each class. All these results justify the CL estimation
method presented in the previous section in the context of the non-scalar DCC and DVEC
families.

4.1 Reduction of DCC models

In this subsection we provide the main result concerning the closure of the DCC family under
the reduction procedure.

Proposition 4.1 (Reduction of non-scalar DCC models) Consider the DCC model de-
fined by (2.1)-(2.3) together with H

t

= D
t

R
t

D
t

. Let ⌃L be the selection matrix for the set
L := {l

1

, . . . , l
d

} of d 2 N labels associated to the indices of the asset returns r
t

2 Rn having
the entries defined in (3.1). Then,

(i) The reduced process {rL
t

} defined by rL
t

:= ⌃Lr
t

2 Rd for all t 2 {1, . . . , T} is a DCC
process whose conditional covariance matrix process {HL

t

} can be written as

HL
t

= ⌃LH
t

⌃L>, with HL
t

2 S+
d

. (4.1)

The dynamics of the matrix process {HL
t

} is determined by the reduced equations:

HL
t

= DL
t

RL
t

DL
t

, (4.2)

RL
t

= (QL
t

)⇤�1/2QL
t

(QL
t

)⇤�1/2, (4.3)

QL
t

=
⇣

i
d

i>
d

�AL �BL
⌘

�QL +AL �
�

"L
t�1"

L
t�1

�

+BL �Q⌃

L
t�1, (4.4)

where DL
t

= ⌃LD
t

⌃L>, RL
t

= ⌃LR
t

⌃L>, QL
t

= ⌃LQ
t

⌃L>, (QL
t

)⇤ = ⌃LQ⇤
t

⌃L>, AL =
⌃LA⌃L>, BL = ⌃LB⌃L>, QL = ⌃LQ⌃L>, and "⌃

t

= ⌃L"
t

. Notice that DL
t

, (QL
t

)⇤ 2
D
d

, RL
t

, QL
t

, AL, BL, QL 2 S
d

, and "L
t

2 Rd.

(ii) If the parameters (A,B) 2 S
n

⇥S
n

satisfy the positive semidefiniteness (PSD) constraints
(2.4), then so do the parameters (AL, BL) 2 S

d

⇥ S
d

of the reduced model associated to
⌃L.

Proof. (i) In order to prove the relation (4.2), we first write down the conditional covariance

of the asset returns
n

r⌃
L

t

o

using its definition in terms of the conditional expectation E
t�1 [·] :=

E [·|F
t�1] with respect to the information set F

t�1 generated by the returns set {r
1

, . . . , r
t�1}.

Indeed,

HL
t

= E
t�1

h

rL
t

rL>
t

i

= E
t�1

h

⌃Lr
t

r>
t

⌃L>
i

= ⌃LE
t�1

h

r
t

r>
t

i

⌃L> = ⌃LH
t

⌃L>. (4.5)
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We next use (??) and point (iii) of Lemma 6.1 in the Appendix. Since D
t

2 D
n

, we hence
have

HL
t

= ⌃LH
t

⌃L> = ⌃LD
t

R
t

D
t

⌃L> = ⌃LD
t

⌃L>⌃LR
t

⌃L>⌃LD
t

⌃L> = DL
t

RL
t

DL
t

.

We use the same reasoning to prove the relation (4.3). We first write

RL
t

= ⌃LR
t

⌃L> = ⌃LQ
⇤�1/2
t

Q
t

Q
⇤�1/2
t

⌃L> = ⌃LQ
⇤�1/2
t

⌃L>⌃LQ
t

⌃L>⌃LQ
⇤�1/2
t

⌃L>. (4.6)

Notice that by (iv) of Lemma 6.1 we can define

(QL
t

)⇤ := Diag(Q⌃

L
t

) = Diag(⌃LQ
t

⌃L>) = ⌃LQ⇤
t

⌃L>,

and hence
(QL

t

)⇤�1/2 = ⌃LQ
⇤�1/2
t

⌃L>. (4.7)

Consequently, using (4.7) in (4.6) we immediately obtain

RL
t

= (QL
t

)⇤�1/2QL
t

(QL
t

)⇤�1/2, (4.8)

which proves (4.3). Finally, in order to prove (4.4), we use (??) and part (ii) in Lemma 6.1,
which yield (4.4).

(ii) First, if the parameter matrix A is positive semidefinite, that is A ⌫ 0, then the reduced pa-
rameter matrix AL 2 S

d

of the reduced model associated to ⌃L satisfies that AL = ⌃LA⌃L> ⌫
0. Indeed, for any v 2 Rd

hv,⌃LA⌃L>vi = h⌃L>v, A(⌃L>v)i ⌫ 0. (4.9)

The proof that BL ⌫ 0 is identical. It is also straightforward to show that
�

i
d

i>
d

�AL �BL��
QL ⌫ 0 by mimicking (4.9) for the relation (i

n

i>
n

�A�B)� S ⌫ 0. ⌅

4.2 Reduction of non-scalar DVEC models

In this subsection we formulate the closure of the DVEC family under the reduction procedure.
The proof is not added since it is similar to the corresponding proof for the DCC model.

Proposition 4.2 (Reduction of DVEC models) Consider the strong DVEC model defined
by (2.1)-(2.6). Let ⌃L be the selection matrix for the set L := {l

1

, . . . , l
d

} of d 2 N labels
associated to the indices of the asset returns r

t

2 Rn having the entries defined in (3.1). Then,

(i) The reduced process {rL
t

} defined by rL
t

:= ⌃Lr
t

2 Rd, for all t 2 {1, . . . , T}, is a DVEC
model whose conditional covariance matrix process {HL

t

} can be written as

HL
t

= ⌃LH
t

⌃L>, with H⌃

L
t

2 S+
d

, (4.10)

and whose dynamics is determined by the equation

HL
t

=
⇣

i
d

i>
d

�AL �BL
⌘

� SL +AL �
�

rL
t�1r

L
t�1

�

+BL �HL
t�1, (4.11)

where AL = ⌃LA⌃L>, BL = ⌃LB⌃L>, and SL = ⌃LS⌃L> 2 S
d

.
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(ii) If the parameters (A,B) 2 S
n

⇥S
n

satisfy the positive semidefiniteness (PSD) constraints
(2.7), then so do the parameters (AL, BL) 2 S

d

⇥ S
d

of the reduced model associated to
⌃L.

To complement Propositions 4.1 and 4.2, Section C of the SoA provides in detail the explicit
functional connection between the parameters of the original DCC or DVEC models and the
reduced counterparts for each of the model parameter specifications defined in Section 2.

As final remark, we point out that the models defined in Sections 2.1 and 2.2 together
with (2.1) are semi-strong according to Definition 2 in [DN93]. The reduced models obtained
in Proposition 4.1 and Proposition 4.2 are also semi-strong. If the initial models are strong
according to Definition 1 in [DN93] (see also Definition 2.2 in [FZ10]), it cannot be established
that the reduced models are also strong.

5 Empirical study

In this section we report the results of various experiments that allow us to the compare the
empirical performances of the di↵erent DCC and DVEC models described in Section 2.3. We
use the same dataset as in [BGO15] and estimate the models for various dimensions (from 5 to
30) using the QML and CL methods discussed in Section 3. We report the point estimates of
the models in order to study the bias problem and we assess the out-of-sample performances
of the di↵erent models using model confidence sets [HLN03, HLN11] with loss functions that
measure the ability of the models to forecast covariance and correlation matrices.

5.1 Dataset and competing models

We use two datasets that consist of daily price quotes of the thirty components of the Dow
Jones Industrial Average Index (DJIA) as of October 2013, downloaded from the Yahoo Finance
database.6 We consider two di↵erent periods:

• Period I: the price quotes are taken from January 19th, 1996 to December 21st, 2010.
This amounts to 3750 observations in the sample. The first 3000 observations (January
19th, 1996 - December 31st, 2007) are reserved for model estimation and the remaining
750 are used for an out-of-sample study.

• Period II: the price quotes are taken from August 25th, 1998 to August 1st, 2013. The
resulting sample contains 3750 observations. The first 3000 quotes (August 25th, 1998
- August 9th, 2010) are kept for model estimation and the last 750 for out-of-sample
testing.

Period I contains the 2008-09 high volatility events in the out-of-sample interval, while Period
II includes them in the interval used for estimation.

6The Yahoo tickers of the stocks used in the study are AA, AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS,
GE, HD, HPQ, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ,
WMT, XOM. The dataset has been prepared adjusting the quotes with respect to stock splits and dividend
payments and the dates at which at least one of the constituents was not quoted were removed.
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The Capital Asset Pricing Model (CAPM) [Sha64] based data preprocessing. In
order to account in the modeling for the common dynamical factors that influence all the assets
under consideration, we use for each asset i (with i = 1, 2, . . . , n) a static unconditional CAPM
one-factor model of the form Y

i,t

= ↵
i

+�
i

Z
t

+R
i,t

, where for time index t, Y
i,t

is the log-return
of asset i, Z

t

is the value of the chosen common factor, R
i,t

is the regression error term, and
↵
i

,�
i

are the intercept and slope coe�cients, respectively.
In the DCC/DVEC empirical experiments presented in this section, we use the CAPM

regression in the following way: let T
est

and T
out

be the sample lengths taken for in-sample
estimation and out-of-sample testing, respectively, and let T := T

est

+T
out

be the total number
time series observations. We take the returns of the S&P500 index as the common factor Z

t

,
estimate by ordinary least-squares the CAPM regression for each asset i, using the observations
t 2 {1, . . . , T

est

}, and store the OLS residuals r
i,t

. Following the same approach as in Chapter
8 of [Eng09], we then estimate the DCC/DVEC models via QML or CL on these residual
returns (r

1,t

r
2,t

. . . r
n,t

)>. In order to perform the out-of-sample analysis, we compute the
out-of-sample residual returns r := {r

Test+1

, . . . , r
T

} according to the relations

r
i,t

= Y
i,t

� b↵
i

� b�
i

Z
t

, i 2 {1, . . . , n} , t 2 {T
est

+ 1, . . . , T} , (5.1)

where b↵
i

and b�
i

are obtained using the T
est

in-sample observations, and use them for the
out-of-sample assessment of the empirical performances of the DCC/DVEC models. For the
generation of the out-of-sample forecasts of the conditional covariance matrices H

t

associated
to each DCC/DVEC model, we also keep the values of the parameter estimates obtained using
only the in-sample observations, that is, we do not re-estimate each model by adding one
observation at a time in the out-of-sample period.

The CAPM based data preprocessing step is not absolutely necessary for the models to
show good performance; its relevance depends on the nature of the data and it is up to the
practitioner to carry out this step. The empirical study reported in this section has also been
implemented without CAPM preprocessing and the conclusions drawn from these results are
broadly similar to those drawn from the results presented in the sequel.

The competing models. In the case of the QML estimation we report results for six di↵erent
DCC/DVECmodel parameterizations, namely: (i) the Hadamard model, (ii) the rank deficient
model with rank r = 2, (iii) the rank deficient model with rank r = 1, (iv) the Almon model,
(v) the Almon shu✏e model (briefly described in the following remark), and (vi) the scalar
model. Some of these models are particular cases of others according to the inclusion relations
represented in Figure 1. In the case of the CL estimation, the number of the studied models
is five since for the rank deficient model with rank r = 2 the composite likelihood estimation
cannot be implemented. In Figure 1 we mark in red the rank two deficient model that is
excluded from the set when the composite likelihood estimator is applied.

Remark 5.1 The Almon shu✏e DCC/DVEC specification is a variant of the Almon model
in which the di↵erent components of the process {r

t

} are ordered in order to enhance the
performance of the Almon parameterization. Indeed, experience shows that the modeling per-
formance of the Almon prescription is much influenced by the ability of the Almon function
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to fit the entry values of the parameter vectors ea and eb that one would obtain by using an
unrestricted rank deficient model with r = 1. This fit can be improved by first carrying out a
reordering of the process components so that the vector entries are as monotonous as possible,
hence fostering a good match between the typical profiles of Almon curves and the entry values
of ea and eb. The proposed reordering (shu✏e) consists in arranging the components in descend-
ing order according to the magnitude of their projection onto the first principal component (the
one that corresponds to the largest eigenvalue) computed using the unconditional covariance
matrix of the available sample. Once the reordering is implemented, the Almon model of the
Subsection 2.3 is used, and the results regarding the reduction procedure in Section C.3 remain
valid. The results in Section 5 show that the Almon shu✏e DCC/DVEC models often exhibit
a better performance than the corresponding Almon models.

Almon

Hadamard Rank deficient (r = 2) Rank deficient (r = 1) Scalar

Almon shu✏e

Figure 1: Inclusion hierarchy of models. The symbol B  � A should be read as “A is a particular case of B”.

5.2 In-sample results

The estimations are performed in several dimensions ranging from 5 up to 30 in such a way
that for the n-dimensional case, the first n assets are picked in the DJIA dataset arranged in
alphabetical order. For the case of the DCC models the estimations are done conditionally on
the estimated standardized (“degarched”) residuals and the approximate targeting estimator
of S, which are the same for all models. In the case of the DVEC models, the estimations are
implemented directly on the CAPM residuals using an exact variance targeting based on them.

Features of the point estimates. Tables ??-?? provide the in-sample estimates of the
matrices A and B for the two periods for both the DCC and the DVEC families, as well as
for the QML and the CL estimators. These tables also contain the estimates obtained using
the McGyver method in[Eng08]. For dimension 30, this method consists in estimating all (i.e.
435) bivariate scalar DCC or DVEC models, thus getting as many point estimates of a and
b. For each dimension smaller than 30 (except 5), the estimates for the corresponding group
of assets are used (e.g. the first ten assets for dimension 10, which provide 45 estimates that
are a subset of the 435 ones for dimension 30). For dimension 5, six groups of five assets are
formed, (1-5, 6-10, until 26-30) which yield 60 estimates altogether for the six groups. For
each dimension, the McGyver estimates exhibit much more heterogeneity than the di↵erent
DCC/DVEC models; this is a consequence of the positive semidefiniteness constraints imposed
on the DCC/DVEC models, to which the McGyver estimator is not exposed. Additionally,
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unusual values arise sometimes in the McGyver case in comparison with the DCC/DVEC
estimates; more specifically, there are values of b close to zero (see the minimum McGyver
values) and of a farther away from zero (see the McGyver maximum values). The mean values
of the McGyver estimates of a are therefore larger than the corresponding medians (reported
in the tables), and the reverse is true for the b estimates. The median values of the a and b
estimates are hardly influenced by the dimension.

5.3 Out-of-sample specification tests

The specification tests used in order to assess the out-of-sample one-step ahead forecasting
performance of the competing DCC/DVEC models estimated via QML and CL methods are
presented in this subsection. The first test is based on the use of multivariate variance stan-
dardized returns, and the next three on the use of portfolio returns.

5.3.1 Model confidence sets based on correlation and covariance loss functions

The di↵erent models are compared by computing the model confidence set (MCS) of [HLN03,
HLN11] using the following loss functions:

dcorr
t

:=
2

n(n� 1)

X

i<j=2,...,n

("
i,t

"
j,t

� ⇢
ij,t

)2 , (5.2)

and

dcov
t

:=
2

n(n� 1)

X

i<j=2,...,n

(r
i,t

r
j,t

� h
ij,t

)2 , (5.3)

where "
t

are the GARCH standardized returns, ⇢
ij,t

and h
ij,t

are the (i, j)-entries of the model
dependent conditional correlation R

t

and conditional covariance H
t

matrices, respectively.
The results of these tests are provided in Tables ??-??, ??-?? for both periods, two families

of models, and both estimation methods considered.

5.3.2 Tests based on portfolio returns

The performances of the competing DCC models can be compared indirectly by running tests
on portfolios constructed using the assets whose returns are modeled. Let w

t

2 Rn denote a
vector of portfolio weights at date t, p

t

= w>
t

r
t

the portfolio return, and �2

p,t

= w>
t

H
t

w
t

the
corresponding portfolio variance, where H

t

is the relevant conditional covariance matrix of r
t

(see (2.1)). Two kinds of portfolios are constructed:

• The minimum variance portfolio (MVP), defined by choosing a weight vector w
t

that
minimizes w>H

t

w subjected to the constraint i>
n

w
t

= 1. The solution of this problem
is given by w

t

= H�1
t

i
n

/i>
n

H�1
t

i
n

. This expression is used to construct the sequence of
variance minimizing portfolios associated to each model.

• The equally weighted portfolio (EWP), implied by the weight vector w
t

:= i
n

/n for each
date t.
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Three tests are considered, based on the observation that under a correct specification of

the type (2.1), the standardized portfolio return y
t

= w>
t

r
t

/
q

w>
t

H
t

w
t

, has unconditional

variance equal to one. The tests assess the validity of di↵erent hypotheses for the series by
t

=

w>
t

r
t

/

q

w>
t

bH
t

w
t

constructed using the one-step ahead forecast of the conditional covariance

matrices bH
t

implied by each of the estimated models under consideration.

Model confidence set (MCS) based on the predictive ability for squared portfolio
returns: The one-step ahead predictive ability of the models is evaluated by computing model
confidence sets using the loss function

d
t

:=
⇣

(w>
t

r
t

)2 �w>
t

bH
t

w
t

⌘

2

. (5.4)

The results of this procedure are provided in Tables ??-?? for Period I and in Tables ??-?? for
Period II. The information that they contain is organized in the same way that was already
described at the end of Section 5.3.1.

6 Conclusions

In this work we achieve four major goals: (i) show that the optimization techniques proposed
in [CO14, BGO15] allow for the further extension to the constrained quasi-maximum likelihood
(QML) estimation of di↵erent richly parametrized multivariate volatility models; in particular,
we consider DVEC family (ii) improve the estimation of high dimensional models using the
composite likelihood (CL) estimator implemented via what we call model reduction procedures,
(iii) provide details as to the reduction of each of the non-scalar models of interest, and (iv)
address the question of the empirical performance of the estimated models and the possibility to
solve various estimation issues documented in the literature by using the proposed techniques.

We also showed that (i) the bias presence issue for the non-scalar DCC models can be elimi-
nated or at least reduced by selecting other non-scalar multivariate volatility families of models
that use a one-stage estimation procedure and for which exact covariance targeting is available,
and also by using the composite likelihood estimation method, which has already been shown
to improve the quality of the parameter estimation in the context of high dimensional scalar
multivariate volatility models; (ii) we provided empirical results that can help practitioners in
choosing which of the model families under study and the estimation techniques considered,
namely QML or CL, are the most appropriate to be used in connection to a particular dataset
and application needed.

Appendix

Lemma 6.1 Let A,B 2 S
n

, C 2 S
d

, D 2 D
n

, and let ⌃ be the selection matrix for the
d  n 2 N labels {l

1

, . . . , l
d

}. Then

(i)
�

⌃A⌃>
�

ij

= A
lilj , i, j 2 {1, . . . , d}.
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(ii) ⌃ (A�B)⌃> = ⌃A⌃> � ⌃B⌃>.

(iii) ⌃⌃> = I
d

.

(iv)
�

⌃>⌃
�

ij

=

(

�
ij

, j 2 {l
1

, . . . , l
d

}
0, otherwise

, for i, j 2 {1, . . . , n}.

(v) ⌃D⌃>⌃A⌃>⌃D⌃> = ⌃DAD⌃>.

(vi) Diag(⌃A⌃>) = ⌃Diag(A)⌃>.

(vii) Diag(⌃>C⌃) = Diag(⌃>Diag(C)⌃) = ⌃>Diag(C)⌃.

Proof 6.2 (i) Is straightforward.

(ii) On the one hand, for any i, j 2 {1, . . . , d}

⇣

⌃ (A�B)⌃>
⌘

ij

=
n

X

k=1

n

X

m=1

⌃
ik

(A�B)
km

⌃
jm

=
n

X

k=1

n

X

m=1

�
kli(A�B)

km

�
mlj = (A�B)

lilj
= A

liljBlilj

(6.1)
On the other hand, it is clear that

⇣

⌃A⌃> � ⌃B⌃>
⌘

ij

= A
liljBlilj , (6.2)

as required.

(iii) Let i, j 2 {1, . . . , d}, then

(⌃⌃>)
ij

=
n

X

k=1

⌃
ik

⌃
jk

=
n

X

k=1

�
kli�klj = �

ij

, (6.3)

where we use the fact that

�
ij

�
ij

=

(

1, k = l
i

, k = l
j

, () l
i

= l
j

() i = j

0, otherwise.
(6.4)

(iv) Let i, j 2 {1, . . . , n}, then

(⌃>⌃)
ij

=
d

X

k=1

⌃
ki

⌃
kj

=
d

X

k=1

�
ilk
�
jlk

= �
ij

, (6.5)

where we use the fact that

�
ilk
�
jlk

=

(

1, i = l
k

, j = l
k

, () i = j, j 2 {l
1

, . . . , l
d

}
0, otherwise.

(6.6)
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(v) On the one hand, for i, j 2 {1, . . . , d}
⇣

⌃D⌃>⌃A⌃>⌃D⌃>
⌘

ij

=
n

X

q,t,s,k=1

(⌃D)
ik

⇣

⌃>⌃
⌘

ks

A
st

⇣

⌃>⌃
⌘

tq

⇣

D⌃>
⌘

qj

=
n

X

q,t,s,k=1

d

X

u,v=1

(⌃D)
ik

�
klu�sluAst

�
tlv�qlv

⇣

D⌃>
⌘

qj

=
d

X

u,v=1

(⌃D)
ilu

A
lulv

⇣

D⌃>
⌘

lvj
=

d

X

u,v=1

n

X

s,k=1

⌃
ik

D
kluAlulvDlvs⌃js

=
d

X

u,v=1

n

X

s,k=1

�
kliDkluAlulvDlvs�slj =

d

X

u,v=1

D
liluAlulvDlvlj = d

liAliljdlj .

(6.7)

On the other hand, for i, j 2 {1, . . . , d}
⇣

⌃DAD⌃>
⌘

ij

=
n

X

q,v,s,k=1

⌃
ik

D
ks

A
sq

D
dv

⌃
jv

=
n

X

q,v,s,k=1

�
kliDks

A
sq

D
qv

�
vlj =

n

X

q,s=1

D
lisAsq

D
qlj = d

liAliljdlj ,

which is equivalent to (6.7), as required.

(vi) By (i) we have that for i, j 2 {1, . . . , d}
⇣

Diag
⇣

⌃A⌃>
⌘⌘

ij

= �
ij

A
lilj . (6.8)

Analogously,
⇣

⌃Diag (A)⌃>
⌘

ij

= (Diag(A))
lilj

= �
liljAlilj = �

ij

A
lilj , (6.9)

which is equivalent to (6.9), as required.

(vii) By part (iv) we automatically have that for any C 2 S
d

, d  n

⇣

⌃>C⌃
⌘

ij

=

(

�
ij

C
lilj , i, j 2 {l

1

, . . . , l
d

}
0, otherwise

, for i, j 2 {1, . . . , n} ,

which provides the following relations for i, j 2 {1, . . . , n}:

(Diag(⌃>C⌃))
ij

= �
ij

C
lilj , (6.10)

(Diag(⌃>Diag(C)⌃))
ij

= �
ij

�
liljClilj , (6.11)

(⌃>Diag(C)⌃)
ij

= �
liljClilj . (6.12)

and form the fact that i = j () l
i

= l
j

we conclude that (6.10)=(6.11)=(6.12), as
required.
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A Notation and preliminaries

In this section we set the notation that we use in this appendix and provide some general
results that are used in the sequel.

A.1 Vectors and matrices

Vector notation: a column vector is denoted by a bold lower case symbol like v and v>

indicates its transpose. Given a vector v 2 Rn, we denote its entries by vi, with i 2 {1, . . . , n};
we also write v = (vi)i2{1,...,n}. The symbols in,0n 2 Rn stand for the vectors of length n
consisting of ones and zeros, respectively. Additionally, given n 2 N, we define the vectors

k1
n := (1, 2, . . . , n)>, k2

n :=
�

1, 22, . . . , n2
�> 2 Rn.

Matrix notation: we denote by Mn,m the space of real n⇥m matrices with m,n 2 N. When
n = m, we use the symbols Mn and Dn to refer to the space of square and diagonal matrices
of order n, respectively. Given a matrix A 2 Mn,m, we denote its components by Aij and we
write A = (Aij), with i 2 {1, . . . , n}, j 2 {1, . . .m}. The symbol Ln,m denotes the subspace of
lower triangular matrices, that is, matrices that have zeros above the main diagonal:

Ln,m = {A 2 Mn,m | Aij = 0, j > i} ⇢ Mn,m.

We denote by L+
n,m ⇢ Ln,m (respectively L�

n,m ⇢ Ln,m) the cone of matrices in Ln,m whose
elements in the main diagonal are all positive (respectively negative). We use Sn to denote the
subspace Sn ⇢ Mn of symmetric matrices:

Sn =
n

A 2 Mn | A> = A
o

,

and we use S+n (respectively S�n ) to refer to the cone S+n ⇢ Sn (respectively S�n ⇢ Sn) of positive
(respectively negative) semidefinite matrices. We write A ⌫ 0 (respectively A � 0) when
A 2 S+n (respectively A 2 S�n ). The symbol In 2 Dn denotes the identity matrix.

The Hadamard product of matrices: given two matrices A,B 2 Mn,m, we denote by
A�B 2 Mn,m their elementwise multiplication matrix or Hadamard product, that is:

(A�B)ij := AijBij for all i 2 {1, . . . , n} , j 2 {1, . . . ,m} . (A.1)

The main properties of the Hadamard product that are used in the sequel are the following:

(i) The Hadamard product of two vectors: given two arbitrary vectors u,w 2 Rn, the
following relation holds true

u�w = Uw, (A.2)

where U 2 Dn is defined by Uii := ui, for all i 2 {1, . . . , n}, that is, U := diag(u) and
where the operator diag is defined in the following subsection.

(ii) The Hadamard product trace property: consider the matrices A,B,C 2 Mn,m. Then
the following relation holds (see for instance [HJ94, page 304])

((A�B)C>)ii = ((A� C)B>)ii for all i 2 {1, . . . , n} .
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This leads to the equality

tr
⇣

(A�B)C>
⌘

= tr
⇣

(A� C)B>
⌘

, (A.3)

which we refer to as the Hadamard product trace property.

(iii) Schur Product Theorem: let A,B 2 Mn be positive semidefinite matrices. Then A�B
is also positive semidefinite. See [BR97] for a proof.

The selection matrices, reduced vectors, and reduced matrices: let N := {1, . . . , n}
and let L := {l1, . . . , ld} be a subset of N of cardinality d  n. We define the selection matrix
⌃L 2 Md,n for the labels L out of N as

⌃L
ij := �jli , i 2 {1, . . . , d} , j 2 {1, . . . , n} , (A.4)

where �jli is Kronecker’s delta. Given a vector v 2 Rn and a selection matrix ⌃L 2 Md,n for

the labels L, we define the reduced vector v⌃L 2 Rd as

vL := ⌃Lv = (vl1 , . . . , vld)
> . (A.5)

Given a square matrix A 2 Mn and a selection matrix ⌃L 2 Md,n for the labels L, we define
the reduced matrix AL 2 Md as

AL := ⌃LA⌃L>. (A.6)

A.2 Operators and their adjoints

We recall some standard matrix operators and introduce several new ones that we use in the
following sections.

The diag and Diag operators: we denote as Diag the operator Diag : Mn �! Dn that
sets equal to zero all the components of a square matrix except for those that are on the main
diagonal. The operator diag : Rn �! Dn takes a given vector and constructs a diagonal matrix
with its entries in the main diagonal.

The vech and math operators: we denote by vech the operator that stacks the elements on
and below the main diagonal of a symmetric matrix into a vector of length N := 1

2n (n+ 1),
that is,

vech : Sn �! RN , vech (A) = (A11, . . . , An1, A22, . . . , An2, . . . , Ann)
> , A 2 Sn,

and we denote the inverse of this operator by math : RN �! Sn.
The adjoint map of vech (respectively math) with respect to the Frobenius inner product is
denoted by vech⇤ : RN �! Sn (respectively math⇤ : Sn �! RN ). In [CO14] it is shown that
given A 2 Sn and v 2 RN , the following relations hold true:

vech⇤ (v) =
1

2
(math (v) + Diag (math (v))) , (A.7)

math⇤ (A) = 2 vech(A� 1

2
Diag (A)). (A.8)
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The Almon lag operator and its tangent map: in [BGO15] we introduced the Almon lag
operator almn : R3 �! Rn, n 2 N, v 2 R3, by using the using the Almon lag function [Alm65]
as

(almn(v))i := v1 + exp(v2i+ v3i
2), for i 2 {1, . . . , n} . (A.9)

The tangent map Tvalmn : R3 �! Rn is determined by the equality

Tvalmn · �v = Kv · �v, with Kv :=
�

in | k1
n � almn(v̄) | k2

n � almn(v̄)
�

2 Mn,3, �v 2 R3,
(A.10)

where the symbol | denotes vertical concatenation of matrices (or vectors), the vectors in,k1
n,k

2
n 2

Rn are introduced in Subsection A.1, and v̄ 2 R3 is obtained out of the vector v 2 R3 by setting
v̄ := (0, v2, v3)

>.
The adjoint T ⇤

valmn : Rn �! R3 of the tangent map Tvalmn is determined by the relation

T ⇤
valmn(u) = K>

v · u, for any u 2 Rn. (A.11)

A.3 Intrinsic parametrization of symmetric matrices

The multivariate volatility models which are at the core of this paper, typically prescribe
the dynamics of the conditional correlation or covariance process by using various types of
symmetric matrices as parameters. Since for any matrix in Sn, its 1

2n(n � 1) supradiagonal
elements are redundant in the sense that they can be deduced from the symmetry, we may
exploit this feature in order to reduce the parameter spaces of the models by using what we
call intrinsic parametrizations.

We denote by P an intrinsic parameter subspace, s is its dimension, ✓ 2 P a generic
element, and by ⇥ the operator ⇥ : P �! Sn that assigns to any ✓ 2 P its corresponding
element in Sn. We list below four instances of such intrinsic parametrizations ⇥(✓) that are
of much use for the multivariate volatility models that we consider in the following sections.
We also provide their tangent maps and corresponding adjoints for each of the cases under
consideration. Notice that in all the cases below we provide the intrinsic parameterization
for only one parameter case even though two parameter matrices or more are typically used
for most multivariate volatility families. In those cases, the relevant maps are obtained in a
straightforward way by extending both their domain and range spaces.

(i) Hadamard case: given a full rank matrix A 2 Sn, it can be naturally parametrized with
the vector a 2 RN with N = 1

2n (n+ 1), by setting A := math (a) (see Subsection A.2 for the
definition of the operator math). In this case ⇥(✓) is defined as

⇥ : RN �! Sn
✓ 7�! math (✓) ,

(A.12)

the tangent map T✓⇥ : RN �! Sn is determined by

T✓⇥ · �✓ = math (�✓) , �✓ 2 RN , (A.13)
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and its adjoint is the di↵erential operator T ⇤
✓⇥ : Sn �! RN which for any given � 2 Sn is

determined by the expression
T ⇤
✓⇥ ·� = math⇤ (�) , (A.14)

with the operator math⇤ provided in Subsection A.2.

(ii) Rank deficient case: let A 2 Sn be the matrix of rank r < n 2 N then, as such, it can
be expressed as A := eA eA>, where eA := matr (a) 2 Ln,r and a 2 RN⇤

, N⇤ = nr� 1
2r(r�1) (see

Subsection A.2 for the definition of the operator matr : RN⇤ �! Ln,r). In this case a 2 RN⇤

is chosen as the intrinsic parameter vector. We showed in Proposition 3.1 of [BGO15] that in
order to ensure that A 2 Sn is well identified, it su�ces to require that eA 2 L+

n,r. In this case
⇥(✓) is defined as

⇥ : RN⇤ �! Sn
✓ 7�! matr(✓)(matr(✓))>,

(A.15)

the tangent map T✓⇥ : RN⇤ �! Sn is given by

T✓⇥ · �✓ = matr(�✓)(matr(✓))
>, �✓ 2 RN , (A.16)

and its adjoint is the di↵erential operator T ⇤
✓⇥ : Sn �! RN⇤

which for any� 2 Sn is determined
by the expression

T ⇤
✓⇥ ·� = 2 vecr(� matr(✓)), (A.17)

with the operator vecr provided in Subsection A.2.

(iii) Almon case: this is a particular case of (ii) where the vector in Rn that generates
the matrix A 2 Sn of rank r = 1 is parametrized using the Almon lag [Alm65] operator
almn introduced in [BGO15] and recalled in (A.9). More explicitly, take a 2 R3 as intrinsic
parameter vector and define ea := almn(a) 2 Rn, then the matrix A 2 Sn can be written as
A := eaea>. In this case ⇥(✓) is defined as

⇥ : R3 �! Sn
✓ 7�! almn (✓) (almn (✓))>,

(A.18)

the tangent map T✓⇥ : R3 �! Sn is given by

T✓⇥ · �✓ = (K✓ · �✓)(almn (✓))
> + almn (✓) (K✓ · �✓)>, �✓ 2 R3, (A.19)

where K✓ =
�

in | k1
n � almn(✓̄) | k2

n � almn(✓̄)
�

2 Mn,3, ✓̄ := (0, ✓2, ✓3)
>, the symbol | denotes

vertical concatenation, and k1
n := (1, 2, . . . , n)>, k2

n :=
�

1, 22, . . . , n2
�> 2 Rn. The adjoint

of T✓⇥ : R3 �! Sn is the di↵erential operator T ⇤
✓⇥ : Sn �! R3 which for any � 2 Sn is

determined by the expression

T ⇤
✓⇥ ·� = 2K>

✓ ·� · almn (✓) . (A.20)

(iv) Scalar case: in this instance the intrinsic parameter is a scalar a 2 R and we set
A := aini

>
n 2 Sn. The map ⇥(✓) is given in this case by

⇥ : R �! Sn
✓ 7�! ✓ ini

>
n ,

(A.21)
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its tangent map T✓⇥ : R �! Sn is

T✓⇥ · �✓ = �✓ ini
>
n , �✓ 2 R, (A.22)

And for � 2 Sn arbitrary we have

T ⇤
✓⇥ ·� = h�, ini

>
n i. (A.23)

B Constrained QML estimation of DCC and DVEC models

In this section we discuss the constrained quasi-maximum likelihood (QML) method for the
estimation of the parameters of the two families of MGARCH models considered in the paper.
We direct the reader to the work [BGO15] that contains all the details concerning the QML
method applied to the constrained estimation of the DCCmodel (2.1) with correlation dynamics
determined by (2.3). All the necessary details concerning the computation of the score function
associated to di↵erent prescriptions of the DCC model are provided there, as well as the
explicit formulas for the Bregman divergences constructed in order to handle the positive
semidefiniteness (PSD) and the identification (IC) constraints imposed on the parameters in
each relevant case. We adopt the same constrained estimation strategy for the DVEC models.
In this section we provide the log-likelihood function associated to the DVEC model and the
explicit expressions for the components of the gradient of the log-likelihood function related to
each of the DVEC model subfamilies presented in Section 2.3.

B.1 Log-likelihood function for the DVEC model

Let r = {r1, . . . , rT } be a sample of size T of n-dimensional observations of the process {rt}
and let ⇥ := (A,B) 2 Sn⇥Sn denote the parameters to be estimated. We implement variance
targeting by pre-estimating S in (2.6) by

PT
t=1 rtr

>
t /T . The log-likelihood function associated

to the process (2.1) is

logL (⇥; r) =
T
X

t=1

lt (⇥; rt) , (B.1)

with

lt (⇥; rt) = �1

2

⇣

n log(2⇡) + log det (Ht) + r>t H
�1
t rt

⌘

, (B.2)

where the conditional covariance matrices Ht follow the dynamics specified by (2.6).
The QML estimation problem for the DVEC model is to obtain the parameter values b⇥

that maximize the log-likelihood function (B.1)-(B.2) and that satisfy the necessary constraints
imposed on the model parameters. In Section 2.3 we provid the list of the DVEC model subfam-
ilies that we are interested in together with the (IC) and (PSD) constraints associated to each
of them. We emphasize that in all the cases we consider the relevant intrinsic parametrizations
⇥(✓), where ✓ 2 P ⇥P is defined in the corresponding intrinsic parameter space of dimension
s specific to each subfamily considered (see also Section A.3).
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B.2 Constrained optimization of the log-likelihood function using Bregman
divergences

This technique was proposed in [CO14] for the case of QML estimation of full VEC models and
extended to DCC models in [BGO15]. This estimation method is based on the optimization of a
sequence of penalized local functions that incorporate the Bregman divergences that guarantee
that the corresponding constraints associated the model are satisfied at each iteration. More
specifically, the solution ✓(k+1) of the local optimization problem after k iterations is defined
by

✓(k+1) = argmin
✓2P⇥P

f̃ (k)(✓), (B.3)

where the local objective function f̃ (k) at ✓(k) is constructed at each iteration k as

f̃ (k) (✓) := f(✓(k)) +r✓f(✓
(k))(✓ � ✓(k)) +

1

2
(✓ � ✓(k))>H(k)(✓ � ✓(k))

+
s1
X

j=1

lj1DMj (✓,✓
(k)) +

s2
X

j=1

lj2i
>
qjDNj (✓,✓

(k)) +
s3
X

j=1

lj3i
>
mj

DLj (✓,✓
(k)). (B.4)

In this expression r✓f(✓
(k)) = �r✓logL(✓

(k); r) is the gradient of minus the log-likelihood
function given in (B.1) andH(k) is its Hessian computed at the point ✓(k). The integers s1, s2, s3
are the numbers of positive semidefiniteness, nonlinear, and linear constraints, respectively;
the symbols DMj (✓,✓

(k)) 2 R, j 2 {1, . . . , s1}, DNj (✓,✓
(k)) 2 Rqj , j 2 {1, . . . , s2}, and

DLj (✓,✓
(k)) 2 Rmj , j 2 {1, . . . , s3} denote the Bregman divergences whose explicit expressions

are provided in [BGO15]; li 2 Rsi , i = {1, 2, 3} are vectors whose components control the
strength of the corresponding Bregman penalizations, and iqj 2 Rqj , j 2 {1, . . . , s2}, imj 2 Rmj ,
j 2 {1, . . . , s3} are vectors of ones.

The local optimization problem in (B.3) is solved by finding the value ✓0 for which

r✓f̃
(k) (✓0) = 0, (B.5)

where the gradient r✓f̃
(k) (✓) of the local model (B.4) can be explicitly computed. The equa-

tion (B.5) for each iteration k can be solved involving for instance the Newton-Raphson method.
We refer the reader to the paper [BGO15] for an exhaustive explanation and detailed compu-
tations of all the necessary ingredients.

B.3 Gradient of the log-likelihood function for the DVEC model

The computation of the estimator b✓ of ✓ via the constrained maximum likelihood optimization
procedure that we use, requires the gradientr✓ logL (✓; r) for each specific intrinsic dependence
⇥(✓) that we work with. In the following proposition we provide explicit expressions of the
score, where we use several operators and vectors that we defined in Section A; the proof is
analogous to the one provided in the Technical Appendix of [BGO15] for the DCC model and
hence it is not repeated here.
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Proposition B.1 Let r = {r1, . . . , rT } be a sample with rt 2 Rn, t 2 {1, . . . , T}. Let ✓ :=
(✓1,✓2) 2 P ⇥ P, ⇥ (✓) := (A (✓1) , B (✓2)) 2 Sn ⇥ Sn, and let logL (✓; r) be the log-likelihood
in (3.5)-(B.2). Then,

r✓logL (✓; r) =
T
X

t=1

r✓lt (✓; rt) =
T
X

t=1

T ⇤
✓⇥ · T ⇤

⇥Ht ·rHt lt (✓; rt) , (B.6)

with

rHt lt (✓; rt) = �1

2

h

H�1
t �H�1

t rtr
>
t H

�1
t

i

. (B.7)

In the relation (B.6), the di↵erential operator T ⇤
⇥Ht : Sn ⇥ Sn �! Sn ⇥ Sn is the adjoint of the

map T⇥Ht : Sn ⇥ Sn �! Sn ⇥ Sn. For each component A (✓1) and B (✓2) of ⇥ and for any
� 2 Sn, T ⇤

⇥Ht is determined by the recursions:

T ⇤
AHt ·� = ��

⇣

rt�1r
>
t�1 � S

⌘

+ T ⇤
AHt�1 [��B] , (B.8)

T ⇤
BHt ·� = �� (Ht�1 � S) + T ⇤

BHt�1 [��B] , (B.9)

that are initialized by setting T ⇤
AH0 = 0 and T ⇤

BH0 = 0. Finally, the di↵erential operator
T ⇤
✓⇥ : Sn ⇥ Sn �! P ⇥ P is the adjoint of the map T✓⇥ : P ⇥ P �! Sn ⇥ Sn, with P ⇥ P

the intrinsic ✓ parameter space and parameterization ⇥ (✓) associated to each of the model
subfamilies considered in Section 2.3. For a given pair �1,�2 2 Sn, these maps are determined
by the following expressions:

(i) The Hadamard DVEC family: let n 2 N, N := 1
2n (n+ 1). In this case, the intrinsic

parameter subspace P is RN , ✓ := (a, b), and ⇥ (✓) := (math (a) ,math (b)), for any
a, b 2 RN . Moreover,

T ⇤
✓⇥ : Sn ⇥ Sn �! RN ⇥ RN

(�1,�2) 7�! (math⇤ (�1) ,math⇤ (�2)) .
(B.10)

(ii) The rank deficient DVEC family with rank r: let r < n 2 N, N⇤ := nr� 1
2r (r � 1).

In this case the intrinsic parameter subspace P is RN⇤
, ✓ := (a, b), and

⇥(✓) := (matr(a)(matr(a))
>,matr(b)(matr(b))

>), for any a, b 2 RN⇤
.

Moreover,

T ⇤
✓⇥ : Sn ⇥ Sn �! RN⇤ ⇥ RN⇤

(�1,�2) 7�! 2 (vecr(�1matr(a)), vecr(�2matr(b))).
(B.11)

(iii) The Almon DVEC family: in this case the intrinsic parameter subspace P is R3

and ⇥ (✓) := (almn (✓1) (almn (✓1))>, almn (✓2) (almn (✓2))>), with ✓1,✓2 2 R3, ✓ :=
(✓1,✓2). Moreover,

T ⇤
✓⇥ : Sn ⇥ Sn �! R3 ⇥ R3

(�1,�2) 7�! 2 (K>
✓1
�1almn(✓1),K>

✓2
�2almn(✓2)),

(B.12)
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where K✓i = ( in | k1
n � almn(✓̄i) | k2

n � almn(✓̄i)) 2 Mn,3, ✓̄i := (0, (✓i)2, (✓i)3)
>,

i 2 {1, 2}, the symbol | denotes vertical concatenation, and k1
n := (1, 2, . . . , n)>, k2

n :=
�

1, 22, . . . , n2
�> 2 Rn.

(iv) The scalar DVEC family: the intrinsic parameter subspace is R and ⇥(✓) := (aini>n , bini
>
n ),

with a, b 2 R, ✓ = (a, b). Moreover,

T ⇤
✓⇥ : Sn ⇥ Sn �! R⇥ R

(�1,�2) 7�!
�

h�1, ini
>
n i, h�2, ini

>
n i

�

.
(B.13)

In order to algorithmically implement Proposition B.1, the operator recursions (B.8)-(B.9)
together with (B.10)-(B.13) have to be reformulated in terms of matrix recursions. We refer
the reader to [BGO15] where that work has been carried out for the DCC case; the obtained
results remain valid in the context of Proposition B.1.

C Reduction procedure and CL implementation for di↵erent
DCC and DVEC subfamilies

The goal of this section is to provide the explicit functional connection between the parameters
of the original DCC or DVEC models and the reduced counterparts for each of the model
parameter specifications defined in Section 2. We show that those remain closed under the
reduction procedure and provide all the necessary ingredients to implement the composite like-
lihood estimation using the expressions of the corresponding components of the score discussed
in Proposition 4.1 in [BGO15] for the DCC model and in Proposition B.1 for the DVEC model,
respectively.

We recall that since the dynamic equations for the matrix processes {Qt} for DCC and
{Ht} for DVEC, respectively, have the same iterative pattern, we proceed in the same way as
in Section 2.3, that is, we denote by the letter Kt the matrices Ht or Qt and use the symbol ⇢t

to indicate the vectors of degarched returns "t for DCC or the v vectors of the original returns
rt for DVEC, respectively. Likewise, we use the letter K for either Q or S. We emphasize
that each of the specifications discussed in this section corresponds to either the DCC model
defined by (2.1)-(2.3), or the DVEC model given in (2.1) and (2.6) with a certain intrinsic
subparametrization in either (2.3) or (2.6), respectively. Additionally, the common notion of
reduced model is used to designate either the reduced DCC model (4.2)-(4.4) in Proposition 4.1
or the reduced DVEC model (4.10)-(4.11) in Proposition 4.2 depending on the context. The
results in this subsection hold true for both model families unless the opposite is stated.

C.1 Reduction of the Hadamard model

We start with the Hadamard model prescription (2.8) provided in Subsection 2.3 with the
corresponding positivity constraints (2.9). In the sequel we call initial the non-reduced model
of the highest available dimension and reduced the one which is obtained via the reduction
procedure described in Section 4.1.
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Proposition C.1 Let r = {r1, . . . , rT } be a sample of n-dimensional asset returns rt 2 Rn,
t 2 {1, . . . , T}. Let L = {l1, . . . , ld} be a set of d asset labels with d  n and ⌃L 2 Md,n be the
selection matrix associated to L with the entries defined as in (A.4), and rL be a corresponding
sample of reduced vectors of the asset returns rLt 2 Rd, t 2 {1, . . . , T} defined as in (A.5).
Consider a n-dimensional initial Hadamard model (2.8) with parameters A,B 2 Sn, then the
following statements hold true:

(i) Let ✓ = (a, b) 2 RN⇥RN , N = n(n+1)/2, ✓L = (aL, bL) 2 RNd⇥RNd, Nd = d(d+1)/2 be
the intrinsic parameters associated to the initial model parameters ⇥ = (A,B) 2 Sn ⇥ Sn
and to the reduced model parameters ⇥L = (AL, BL) 2 Sd ⇥ Sd, respectively. Let
LL = logLL(⇥

L(✓L); rL) be the log-likelihood function associated to the reduced pro-
cess {rLt , HL

t } with {HL
t } the reduced conditional covariance matrix process. Then, the

intrinsic parameters ✓L and ✓ of the reduced model and the initial models, respectively,
are related via

aL = aL(a) = vech(⌃Lmath(a)⌃L>), (C.1)

bL = bL(b) = vech(⌃Lmath(b)⌃L>) (C.2)

and the components of the gradient of LL with respect to the corresponding intrinsic
parameters ✓ of the initial model are given by

raLL = vech
⇣

⌃L>math (raLLL)⌃
L
⌘

, (C.3)

rbLL = vech
⇣

⌃L>math
�

rbLLL
�

⌃L
⌘

, (C.4)

where raLLL and rbLLL are the components of the gradient of the log-likelihood function
LL of the reduced model with respect to its intrinsic parameters, that is, to aL and bL,
respectively.

(ii) If the intrinsic parameters ✓ = (a, b) 2 RN ⇥ RN of the initial model satisfy the posi-
tive semidefiniteness (PSD) constraint (2.9), then so do the intrinsic parameters ⇥L =
(AL, BL) 2 Sd ⇥ Sd of the reduced Hadamard model associated to ⌃L.

Proof. (i) The relations (C.1) and (C.2) can be easily verified. For example,

aL = vech(AL) = vech(⌃LA⌃L>) = vech(⌃Lmath(a)⌃L>).

(ii) In order to prove (C.3), we use the relation (C.1) and the the chain rule. Indeed, for any
v 2 RN we write:

daLL · v = daLLL · Taa
L · v = daLLL ·

h

vech
⇣

⌃Lmath(v)⌃L>
⌘i

, (C.5)

or, equivalently,

hraLL,vi = hraLLL, vech(⌃
Lmath(v)⌃L>)i = hvech⇤(raLLL),⌃

Lmath(v)⌃L>i =

= tr
⇣

vech⇤(raLLL) · ⌃Lmath(v)⌃L>
⌘

= tr
⇣

⌃L>vech⇤(raLLL) · ⌃Lmath(v)
⌘

=

= h⌃L>vech⇤(raLLL)⌃
L,math(v)i = hmath⇤(⌃L>vech⇤(raLLL)⌃

L)),vi, (C.6)
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where vech⇤ : RNd �! Sd and math⇤ : Sd �! RNd are the adjoint maps of the operators vech
and math, respectively. Using the properties (A.7) and (A.8) we obtain that for any w 2 RNd

math⇤(⌃L>vech⇤(w)⌃L) =
1

2
math⇤

h

⌃L> · (math(w) + Diag(math(w))) · ⌃L
i

=
1

2
math⇤(⌃L>math(w)⌃L) +

1

2
math⇤(⌃L>Diag(math(w))⌃L)

= vech(⌃L>math(w)⌃L � 1

2
Diag(⌃L>math(w)⌃L))

+ vech(⌃L>Diag(math(w))⌃L)

� 1

2
vech

⇣

Diag
⇣

⌃L>Diag(math(w))⌃L
⌘⌘

. (C.7)

By part (vii) of Lemma 6.1, the relation (C.7) immediately yields that

math⇤(⌃L>vech⇤(w)⌃L) = vech(⌃L>math(w)⌃L), (C.8)

which substituted in (C.6) proves (C.3). The relation (C.4) is proved analogously. ⌅

C.2 Reduction of the rank one model

We consider the rank one model prescription (2.10) described in Section 2.3 with the corre-
sponding identification (IC) and positivity (PSD) constraints (2.11)-(2.12). The following
proposition states the closure of the rank one specification under reduction and provides the
functional link between the expressions for the gradient of the log-likelihood function of the
reduced rank one model with respect to its intrinsic parameters and those of the initial model.

Proposition C.2 In the same conditions as in Proposition C.1, consider an initial rank one
model with parameter matrices ⇥ = (A,B) 2 Sn⇥Sn intrinsically paramtrized with ✓ = (a, b) 2
Rn ⇥ Rn. Then the following statements hold true:

(i) The reduced model associated to ⌃L is a rank one model with parameter matrices ⇥L =
(AL, BL) 2 Sd ⇥ Sd intrinsically parametrized by ✓L = (aL, bL) 2 Rd ⇥ Rd which are
related to the parameters ✓ of the initial rank one model via the relations

aL = ⌃La and bL = ⌃Lb. (C.9)

(ii) If the initial rank one model parameters ✓ satisfy the positivity constraints (PSD) (2.12),
then so do the parameters ✓L of the reduced rank one model. This is not necessarily true
for the identification constraints (IC) (2.11).

(iii) The statement in part (ii) of Proposition C.1 applies to the rank one case with (C.3)-(C.4)
replaced by

raLL = ⌃L>raLLL, (C.10)

rbLL = ⌃L>rbLLL. (C.11)
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Proof. (i) It is obtained by a straightforward verification. Indeed, for the parameter matrix
A(PSD) 2 Sd of the reduced model associated to ⌃L we write

AL = ⌃LA⌃L> = ⌃Laa>⌃L> = aLaL>. (C.12)

The same argument applies to the parameter bL.
(ii) It is straightforward.
(iii) In order to prove (C.10) and (C.11), we proceed in the same way as in the proof of the
part (ii) in Proposition C.1. We write for any v 2 Rn

daLL · v = daLLL · Taa
L · v = daLLL · ⌃Lv, (C.13)

which immediately yields
raLL = ⌃L> ·raLLL, (C.14)

as required. The relation (C.11) is proved analogously. ⌅

C.3 Reduction of the Almon model

Consider the Almon model prescription (2.13) provided in Subsection 2.3 subjected to the cor-
responding identification (IC) (2.14) and positivity (PSD) constraints (2.15). In the following
proposition we show that the Almon model is, in general, not closed under reduction but it is
nevertheless transformed into a specifically “subparametrized” rank one model for which the
composite likelihood estimation can be implemented. Additionally, we provide the relevant
details on how to derive the expressions of the gradient of the log-likelihood function of the
reduced rank one model with respect to the intrinsic parameters of the initial Almon model.

Proposition C.3 In the same conditions as in Proposition C.1, consider an initial Almon
model with parameter matrices ⇥ = (A,B) 2 Sn⇥Sn intrinsically paramtrized with ✓ = (a, b) 2
R3 ⇥ R3 via the assignments ea = almn(a), eb = almn(b) or, analogously, eai = almn(a, i),
ebi = almn(b, i), i 2 {1, . . . , n} and A = eaea>, B = ebeb

>
as in (2.13). Then the following

statements hold true:

(i) The reduced model associated to ⌃L is a rank one model with matrices ⇥L = (AL, BL) 2
Sd ⇥ Sd that are intrinsically parametrized by the same parameters ✓ = (a, b) 2 R3 ⇥ R3

as the original Almon model via the relations AL = eaL
eaL>, BL = eb

L
eb
L>

, where

eaL = ⌃L
ea with (eaL)j = almn (a, lj) , j 2 {1, . . . , d} , (C.15)

eb
L
= ⌃L

eb with (eb
L
)j = almn (b, lj) , j 2 {1, . . . , d} . (C.16)

(ii) If the initial Almon model satisfies the positive semidefiniteness constraints (PSD) (2.15),
then so does the reduced rank one model. This is not necessarily true for the identification
constraints (IC) in (2.14).
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(iii) Let LL = logLL(⇥
L(✓); r⌃

L
) be the log-likelihood function associated to the reduced rank

one model corresponding to ⌃L . The components of the gradient of LL with respect to
the intrinsic parameters ✓ of the initial Almon model is computed using the expression
for the gradient of the log-likelihood function for the Almon case replacing the map ⇥(✓)
given in (A.18) by

⇥L : R3 ⇥ R3 �! Sd ⇥ Sd
✓ = (a, b) 7�! (⌃Lalmn (a) (almn (a))>⌃L>,⌃Lalmn (b) (almn (b))>⌃L>),

(C.17)
and replacing the adjoint of the tangent map T ⇤

✓⇥ : Sn ⇥ Sn �! R3 ⇥ R3 in (B.12) by

T ⇤
✓⇥

⌃L
: Sd ⇥ Sd �! R3 ⇥ R3

(�1,�2) 7�! 2
�

K>
a ⌃L>�1⌃Lalmn(a),K>

b ⌃L>�2⌃Lalmn(b)
�

,
(C.18)

where Ka =
�

in | k1
n � almn(ā) | k2

n � almn(ā)
�

, Kb =
�

in | k1
n � almn(b̄) | k2

n � almn(b̄)
�

2 Mn,3, ā = (0, a2, a3)
>, b̄ = (0, b2, b3)

>, the symbol | denotes vertical concatenation, and
k1
n = (1, 2, . . . , n)>, k2

n =
�

1, 22, . . . , n2
�> 2 Rn.

Proof. (i) It is obtained by a straightforward verification. Indeed, for the parameter matrix
AL 2 Sd of the reduced model associated to ⌃L we write

AL = ⌃LA⌃L> = ⌃L
eaea>⌃L> = eaL

eaL>, (C.19)

where eaL = ⌃L
ea = ⌃Lalmn(a) with components eaLj = �lj ,jalmn(a)j , j = {1, . . . , d} which can

be hence written as (eaL)j = almn (a, lj) , j 2 {1, . . . , d}. The same argument applies to BL.
(ii) The expression (C.17) immediately follows from part (i) of the proposition. In order to
prove (C.18), we proceed in the same way as in the proof of part (ii) in Proposition C.1. We
write for any v 2 R3

daLL · v = dALLL · TaA
L · v, (C.20)

where TaA
L : R3 �! Sd is the tangent of the map AL(✓) = eaL(✓)eaL>(✓). This expression

yields:
raLL = T ⇤

aA
L(rALLL). (C.21)

We now determine the map TaA
L : R3 �! Sd and obtain

TaA
L · �a = ⌃L(Ka · �a)almn(a)

>⌃L> + ⌃Lalmn(a)(Ka · �a)>⌃L>, (C.22)

where we used the expressions (C.19), (C.17), and the definition (A.10) of the tangent map
T✓almn : R3 �! Rn. We now dualize the relation (C.22) in order to determine the adjoint
map T ⇤

aA
L : Sd �! R3. For arbitrary � 2 Sd we write

hT ⇤
aA

L(�), �ai =h�, TaA
L · �ai = h�,⌃L(Ka · �a)almn(a)

>⌃L>i
+ h�,⌃Lalmn(a)(Ka · �a)>⌃L>i

=2h�⌃Lalmn(a),⌃
L(Ka · �a)i = 2hK>

a ⌃L>�⌃Lalmn(a), �ai (C.23)
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which yields
T ⇤
aA

L : Sd �! R3

� 7�! 2
�

K>
a ⌃L>�⌃Lalmn(a)

�

.
(C.24)

An analog expression can be proved for the tangent map TbB
L : R3 �! Sd and its adjoint

T ⇤
bB

⌃;L : Sd �! R3. By combining the resulting two maps we obtain (C.18). ⌅
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