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Abstract

A method capable of estimating richly parametrized versions of the dynamic conditional correlation
(DCC) model that go beyond the standard scalar case is presented. The algorithm is based on
the maximization of a Gaussian quasi-likelihood using a Bregman-proximal trust-region method
that handles the various non-linear stationarity and positivity constraints that arise in this context.
The general matrix Hadamard DCC model with full rank, rank equal to two and, additionally, two
different rank one matrix specifications are considered. In the last mentioned case, the elements of
the vectors that determine the rank one parameter matrices are either arbitrary or parsimoniously
defined using the Almon lag function. Actual stock returns data in dimensions up to thirty are used
in order to carry out performance comparisons according to several in- and out-of-sample criteria.
Empirical results show that the use of richly parametrized models adds value with respect to the
conventional scalar case.
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1 Introduction

The choice of the dynamic conditional correlation (DCC) model has become very common in the multi-
variate GARCH applied literature, where the goal is often to fit the dynamics of time-varying conditional
variances and correlations of asset returns and to forecast their future values. The DCC family was de-
veloped in [Eng02] and [TT02] as a generalization of the constant conditional correlation (CCC) model
of [Bol90]. The main advantage of DCC models is the availability of a two-step estimation procedure
which, combined with correlation targeting, makes their use feasible even when the number of assets is
high. It is worth noting that even though in the original paper [Eng02] a general matrix Hadamard-type
model parameterization is proposed, it is almost exclusively the scalar prescription that is used in ap-
plications. This simplified version of the model imposes the same correlation dynamics to all the pairs
of assets that are considered which, for sizable dimensions, may constitute an excessively restrictive
homogeneity assumption.

The main contribution of this paper is to provide adequate estimation tools for several non-scalar
richly parameterized DCC models and to empirically evaluate how they perform with respect to each
other and to the scalar model. The non-scalar models that are considered are the general matrix
Hadamard-type model and four more parsimonious particular cases thereof. The main conclusions are
that the estimation of these models is practically feasible in moderate dimensions (up to thirty), and
that two of the non-scalar models considered are worth using in practice.

This study is restricted to DCC models in which only an approximate correlation targeting as
suggested by [Eng02] is possible. This is a widespread approach that aims at reducing the number of
parameters in the likelihood maximization by replacing the constant term matrix of the quasi-correlation
process by a moment estimate. This approach is controversial in the DCC context since the approximate
targeting procedure is statistically inconsistent (see [CM12] for an extensive review). This issue has
motivated the introduction by [Aiel3] of a corrected DCC (¢cDCC) model that carefully addresses it,
but the price to pay is that estimation is more convoluted. Despite the substantial theoretical interest
of the cDCC model, it is not considered in this work since existing empirical findings and simulation
results in [Aiel3] reveal that the performance of the cDCC and DCC models does not differ much in
practice for typical financial series.

The need to go beyond the scalar DCC prescription has been partly addressed in [HF09] and [CES06].
In these papers, a so-called diagonal DCC model that allows for asset-specific heterogeneity in the
correlation structure is used. This extension specifies the parameter matrix associated to the lagged
innovations as a rank one matrix, and the same applies to the parameter matrix of the lagged quasi-
correlation term although that one is also kept as a scalar parameter in [HF09]. The results in those
papers provide empirical evidence supporting that these richer DCC models exhibit improved perfor-
mance with respect to the scalar model. Another relevant paper in the same direction is that of [NSS14]
who introduce (among others) a model, called Rotated DCC (RDCC), which uses similar specifications
as in the two previously cited papers, after applying an estimated orthogonal transformation to the
devolatized returns, and illustrate that it yields increased performance when compared to existing mod-
els like, for instance, the OGARCH model of [Ale98]. The contribution of this paper with respect to
these mentioned works is that other non-scalar and more richly parametrized models are proposed and
estimated.

The results in [HF09] and [CES06] lead us to believe that non-scalar DCC models with asset specific
dynamics in the correlation structure, like the one associated to the original matrix Hadamard-type
parameterization of [Eng02], can yield a superior performance in practical applications when compared
with the widespread scalar DCC model. This conjecture can only be verified when effective estimation
procedures are available for the richer models, the absence of which explains in part statements in the
literature (see for example [BCGO6] or Chapter 7 of [Eng09]) about the lack of empirical interest of these
more general models. Two difficulties in this respect arise: the first one is the quadratic dependence of
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the number of parameters on the model dimension and the second is the need to impose at the time
of estimation the nonlinear constraints that ensure the positivity and the stationarity of the dynamic
conditional correlation process.

Our attention hence turns first to the optimization techniques that can be used for the estimation
of non-scalar DCC models and, more specifically, to the approach proposed by [CO14] based on the
use of Bregman divergences, that we take as our starting point. That paper successfully applies this
approach to the estimation of the heavily parametrized VEC-GARCH model subjected to stationarity
and positivity constraints. We extend this optimization method to the DCC models and develop explicit
estimation tools for a variety of non-scalar DCC specifications originating from the general Hadamard-
type DCC prescription in [Eng02]. Even though the DCC family has a much smaller parameter space
than VEC, the use of the Bregman divergences approach is extremely advantageous in the treatment of
the DCC highly nonlinear optimization constraints. The paper is therefore organized around the three
topics that we describe in the following paragraphs.

DCC model specifications: The considered models are the Hadamard DCC family for which the two
parameter matrices of the lagged innovations and lagged quasi-correlation terms are symmetric with
full rank, as well as four other subfamilies where these matrices have smaller ranks. More specifically, in
one case the rank is set equal to two, and in three other cases it is equal to one. The first of these three
“rank one” cases is equivalent to the diagonal DCC model considered also in [HF09] and [CES06], where
the parameter matrices are built as outer products of vectors of size the number n of assets that are
being modeled. The other two “rank one” models are new and called Almon DCC and Almon shuffle
DCC. In these models, the elements of the vectors that generate the rank deficient parameter matrices
are defined using an Almon function (see [Alm65]). Thus, like in the scalar model, the number of
parameters that need to be estimated does not depend on the dimension n but the correlation dynamics
differs for all pairs of assets. The Almon DCC models are therefore more flexible than the scalar DCC
model, while determined by a comparable number of parameters. Section 2 is devoted to presenting
the general setup for DCC models, to describing in detail the different parameterizations under study,
as well as the constraints that are imposed on each of them in order to ensure the stationarity of the
process and the positive definiteness of the resulting conditional correlation matrices.

DCC model estimation: This is the subject of Section 3, which presents the main ideas behind the
optimization algorithm chosen for the estimation. Bregman divergences are used in order to handle
the model constraints, following the scheme proposed in [CO14]. This approach is very popular in the
context of machine learning (see for instance [DT07] and [KSD09a]). In our situation, it is particularly
advantageous because it allows for the treatment of the nonlinear optimization constraints that the
problem is exposed to without resorting to Lagrange duality or other techniques that demand the
solution of supplementary optimization problems. Section 3 contains a comprehensive description of the
ingredients necessary to implement this optimization algorithm for each of the DCC models.

DCC specifications performance assessment: The possibility of estimating non-scalar DCC models
with the tools just mentioned, allows us to empirically study their performance and, ultimately, to assess
the need for those models in the processing of financial data. In Section 4 an in- and out-of-sample
study is carried out using a dataset containing the returns of the thirty assets listed in the Dow Jones
Industrial Average Index. The results reveal that: (i) no model (scalar or not) dominates systematically
the others in terms of in-sample and out-of-sample performance; (ii) the full rank Hadamard model is in
most cases dominated by less richly parameterized choices; (iii) among the more parsimonious models,
the rank one (or diagonal) model and the Almon (shuffle) models perform better in many cases than
the scalar model. Nevertheless, for a given dataset, the practical choice between the models has to be
made by taking into account the specifics of the time series in question, the available sample length,
dimension, and other considerations.

A technical appendix is available online. It contains the proofs of the results in the paper and
many other technical details that could not be included in the main body of the paper due to a space
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limitations.

2 Dynamic conditional correlation models

The different dynamic conditional correlation (DCC) model specifications studied in the paper are pre-
sented in this section. In the first subsection, the most general model is defined; it is referred to as
the (general) Hadamard DCC model. The following sections define more particular models obtained
by imposing parametric restrictions on the general Hadamard case. For each model, the paramet-
ric constraints that need to be imposed so that the correlation process admits a stationary solution
and the resulting conditional correlation matrices are positive definite, are explained. In some cases,
identification constraints are also required.

All DCC models are based on the following functional prescription for the n-dimensional conditionally
heteroscedastic discrete-time process {r;}:

r, = H?¢,, {&}~IN(O,,L,), t=1,2,...,T, (2.1)

meaning that {&,} is a set of n-dimensional independent normally distributed random vectors with
mean 0,, and identity covariance matrix I,. {H;} is a predictable positive semidefinite matrix process,
that is, for each ¢t € N, H; is a random matrix that takes values in S; (the cone of positive semidefinite
symmetric matrices); predictable means that the random variable H; is F;_1-measurable, where F;_1 :=
o(r1,...,ri—1) is the information set generated by {ry,...,r;—1}.

In the first stage of the DCC model construction, a dynamic process is chosen for the conditional
variances o7, of each component r;; of ry, for example the GARCH(1,1) model of [Bol86]:

0'1-2725 = Qo +O[177;7’Z-27t_1 +517i0—i2,t—1’ i€ {1,...,TL}, (22)

0, and o1, + B1,; < 1, in order to ensure the stationarity of the process and the positivity of the
conditional variances afyt. Standardized returns of the i-th asset at time ¢ are defined as €;; := 17 4/0; ¢
fori =1,2,...,n and are assembled in the vector €;. More sophisticated GARCH models could be used
in (2.2) to take into account specific stylized facts of the financial time series at hand like, for example,
asymmetry.

The second stage of the DCC model construction consists in specifying a dynamic equation for the
conditional correlation matrices R; of the standardized returns €;. The matrix R; is related to the
covariance matrix H; by the relation

where the parameters ag ;, a1 4, and 1 ; for all i € {1,...,n} satisfy the inequalities ag; > 0, @14, 81,5 >

Ht == Dth.Dt, (23)
where D, := diag (01,¢,...,0n,¢). The dynamic behavior of the conditional correlation process {R;} is
modeled through a dynamic matrix process {Q:} to which it is connected by the relation

Ry =Q; Q™" (2.4)

where the matrix @} is defined as QF := Diag(Q:) (the Diag operator sets equal to zero all the compo-
nents of a square matrix except for those that are on the main diagonal). The relation (2.4) transforms
Q@ into a correlation matrix since the diagonal elements of @Q; are not necessarily equal to 1. The
different DCC models differ in the way in which the dynamics of @Q); is parameterized.

2.1 The general DCC model and its parameter constraints

We consider separately the targeted and the non-targeted versions of the general DCC model because
they require different parameter constraints.
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Non-targeted general DCC model. The most general dynamic equation used for Q) is (see [Eng02]):
Q=C+A0 (e-18[_1) + BOQ1, (2.5)

where A, B, and C are symmetric parameter matrices, that is, A, B, C € S,,. The functional form of the
equation (2.5) guarantees neither that the resulting joint process {r;, H;} is stationary nor that {H,}
takes values in S and hence consists of covariance matrices. Sufficient conditions on the parameters
A, B, and C that ensure those features are:

(SC) Stationarity constraints: |Ai; + Bij| <1, 4,5€{l,...,n}. (2.6)
(PC) Positivity constraints: A»0, B>0, C>0, and @ = 0. (2.7)

In these expressions the symbols > 0 (respectively, > 0) denote positive semidefiniteness (respectively,
positive definiteness). We emphasize that there is still no proof in the DCC context that ensures that
what we called the stationarity constraints (2.6) actually guarantee that dynamical feature. Such proof
is only available for the cDCC model of [Aiel3]. The sufficiency of the positivity constraints follows from
an inductive argument using the expression (2.5) that defines {Q;}, together with the Schur Product
Theorem (see [BRI7]).

The specification (2.5) is rarely used in practice due to the large number of parameters involved
which makes this version of the DCC model suffer from the so called curse of dimensionality. For that
reason, in the sequel, we focus mainly on DCC models with approximate correlation targeting, even
though we also provide specific remarks concerning the non-targeted case (2.5).

Targeted general DCC model. The targeted version of the general DCC model is obtained from
(2.5) by replacing the constant term C by (ini] — A — B) ® S, namely,

Qi = (ini) —A-B)OS+AG (6,16, 1) + BOQ;_1, (2.8)

where i, stands for the vector of length n consisting of ones, A, B € S,, are parameter matrices, and
S =F [ee]] €S} (see [CM12], and [Aiel3] for additional details). This is motivated by the possibility
to estimate .S, prior to the estimation of A and B, by

1 I
& T
S = T ;:1 g1€, . (2.9)

Sufficient conditions on the parameters that ensure the stationarity of the joint process {r;, H;} and the
positive definiteness of {H,} are:

(PC) Positivity constraints: A=0, B>0, (2.10)
(ipiy —A—B)®S =0, Qo=0. (2.11)

It is necessary to stress that the first constraint in (2.11) cannot be replaced by i,i} — A — B = 0 even
if S > 0 (which is the case when S is estimated using S in (2.9)). Indeed, if the constraints (2.10) hold,
they generically prevent that i,i, —A— B > 0 since any vector v which is simultaneously in the kernel of
i,i] and not in the kernel of G := A+ B satisfies (v, (i,i,] — A — B)v) < 0. In the targeted case there is
no need to impose stationarity constraints due to the following result* that shows that the stationarity
constraints are automatically satisfied in the presence of the positivity constraints (2.10)-(2.11) (see the
technical appendix for the proof).

Proposition 2.1 Consider the targeted DCC model (2.1), (2.3), (2.4), with Q; as in (2.8). If the
parameter matrices A, B € S,, satisfy the positivity constraints (2.10) and (2.11), then the stationarity
constraints (2.6) are automatically satisfied.

4We thank an anonymous referee for this valuable observation.
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In the following subsections we specify several parameter subfamilies of the general DCC model that we
just introduced, together with their intrinsic parameterizations and associated constraints. Notice that
in the targeted models setup, Proposition 2.1 remains valid for all the cases considered.

2.2 The Hadamard DCC model and its parameter constraints

Since the parameter matrices A and B are generic elements in S,,, they can be parametrized with
(a,b) € RN x RY, where N = 3n(n+1), by setting A := math (a) and B := math (b), where the
operator math : RV — S, is the inverse of the vech operator (see the technical appendix for the
details). The space RY x R¥ is referred to as the intrinsic parameter space of the Hadamard DCC
model and is generically denoted by P x P. The dimension of the intrinsic parameter subspace P is

denoted by P. Using these intrinsic parameters, the relation (2.8) is written as
Q= (ini;r — math (a) — math (b)) ® S + math (a) ® (et,lell) + math (b) ® Q¢—1. (2.12)

Sufficient conditions on the parameters a and b that ensure that the resulting joint process {r;, H;}
is stationary and that {H;} takes values in S; and hence consists of covariance matrices are:

(PC) Positivity constraints: math (a) > 0, math (b) > 0, and (2.13)
(ini, — math(a) —math (b)) ®S =0, Qo> 0. (2.14)

In the non-targeted Hadamard setup, the parameter matrix C' € S,, in (2.5) is parametrized by ¢ € RY,
N = in(n+1) via the assignment C' := math(c), and hence the constraints on the parameters a, b,
and c are:

(SC) Stationarity constraints: la; +b;| <1, ie{l,...,N}. (2.15)

(PC) Positivity constraints: math (a) > 0, math(b) > 0, math(c) >0, Qo >=0. (2.16)

Given that the number of parameters in (2.12) exhibits a quadratic dependence on the dimension n of
the process {r;}, the following subsections are dedicated to the formulation of several more parsimonious
subparameterizations of this general Hadamard DCC model and to the characterization of the associated
parameter constraints.

2.3 Rank deficient DCC models

The rank deficient DCC models constitute a subfamily of the Hadamard DCC family where the matrices
A and B € S, in (2.8) are constrained to have a common prescribed rank r € {1,...,n — 1}, that is,
rank(A) = rank(B) = r. A natural parameterization for A and B consists of using A, B € M, (the
space of real n x r matrices ) such that A = AAT and B = BBT. This choice poses an identification
problem due to the invariance properties of the product AAT. Indeed, given A € S, with rank r
and A € ML, - such that A = EET, this equality also holds true for any other matrix A= EO, with
O € O(r) an arbitrary element of the orthogonal group in r dimensions: AAT = AOOTAT = AAT = A.
This observation indicates that the intrinsic parameter subspace looked for is not M, , but the orbit
space M, ,./O(r) of the Lie group action of O(r) on the set of rectangular matrices M, , via the map
P : O(r) x M,,,, — M,,, given by (O, A) — AO~'. The next proposition provides a convenient
model space for the quotient M, ,./O(r) and, as a corollary, a characterization of the intrinsic parameter
subspace of a rank deficient DCC model. A proof of this result can be found in Section C of the TA.

Proposition 2.2 In the setup just described, consider the cone L.t . of lower triangular matrices with

positive elements in the main diagonal. Then, the map W : L5 — M,,./O(r) given by A —> [A] is
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a bijection. The symbol [A] denotes the orbit in M, ,./O(r) corresponding to the element A € M, , with
respect to the action of O(r) on M,, ;.

This proposition implies that the intrinsic parameter subspace of the rank deficient family is ]L:{’m. This

can be described as RN*, N* =nr — %r(r — 1), via the operator mat,. : RV — L, that transforms

a vector of length N* into the lower triangular n x r matrix defined by,

v 0 e 0
V2 Up+1 e O
mat, (v) = | ' ' ' , for any v € RN (2.17)
Uy Unp4r—1 0 UN*—n4r
Un V2n—1 T UN~*

just by adding a positivity constraint on the entries of the vector in RN" that constitute the main
diagonal of the corresponding matrix via the mat, operator. More explicitly, let a,b € RN and define
A := mat, (a) and B := mat, (b). The matrices A and B in (2.8) are hence given by A := AAT,
B:=BBT. Using the notation just adopted, the rank deficient DCC model specification can be written

as
Qi = (ini] —AAT —BBT)© S+ (AAT) ® (e4_1¢] )+ (BBT) ® Qs_1. (2.18)

In order to ensure that A B e IL;[T and that, by Proposition 2.2, the model is well identified, the

following constraints need to be imposed:

(IC) Identification constraints: ai; >0, b

]

>0, (2.19)

where i; =n(j — 1)+ %j(S —34), 5 €{1,...,r} are the entries of any vector in R¥" that amount to the
main diagonal of the corresponding matrix in L, , via the mat, representation.
Additionally, the positive definiteness constraints are expressed as:

(PC) Positivity constraints: (ini) —AAT —BBT)®S8=0, Qo=0. (2.20)

In the non-targeted version of the rank deficient DCC model, the additional parameter matrix C € S,

in (2.5) is parametrized by ¢ € RN, N = 1n (n + 1) via the assignment C := math(c). In this case, the

stationarity constraints need to be separately added; more specifically, we have:
(IC) Identification constraints: a;; >0, b;; >0, (2.21)
with i; =n(j — )—|—2j(3 i), je{l,...,r}

(PC) Positivity constraints: math(c) = 0, Qo =0. (2.22)

kA
(SC) Stationarity constraints: Z ‘gikgjk + Eikéjk <1, i,5e{l,...,n}, i >4  (2.23)
k=1

2.4 The Almon DCC model

The Almon DCC model specification is a particular case of the rank deficient DCC model with r = 1,
where the vectors that generate the matrices A, B € S,, in (2.8) are parametrized using the Almon lag
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function of [Alm65] alm,, defined as follows: given n € N and v € R3, the Almon lag operator alm,, :
R3 — R™ generates a vector alm,, (v) whose entries are (alm, (v)); = v +exp(vai+uv3i?),i € {1,...,n}.
Let a,b € R3 and define a := alm,(a), b := alm,(b) € R®. The parameter matrices A4, B € S,

T
in (2.8) can be written as A := aa ', B := bb , and hence the Almon DCC model specification is given
by

e ~~T e ~~T
Qi = (ini, —@a' —bb )OS+ (@a')® (gi—16, 1)+ (bb ) O Q1 (2.24)

and the associated constraints by

(IC) Identification constraints: @, >0, by >0, ie.
a1 + exp(as + az) > 0, by +exp(bs + b3) > 0. (2.25)

T
(PC) Positivity constraints: (ipi) —@a' —bb )© S =0, Qo= 0. (2.26)

In the non-targeted version of the Almon DCC model, the parameter matrix C € S, in (2.5) is

parametrized by ¢ € R¥, N = in (n+ 1) via the assignment C := math(c), and hence the constraints

on the parameters a, b € R3, and ¢ € RY are:

(IC) Identification constraints: 4 >0, by >0. (2.27)
(PC) Positivity constraints: math(e) = 0, Qo = 0. (2.28)

(SC) Stationarity constraints:

aiaj+'5{5j’<1, ijefl,....n}, i>J. (2.29)

2.5 The Almon shuffle DCC model

The Almon shuffle DCC specification is a variant of the Almon DCC model in which the different
components of the process {r;} are ordered so that the performance of the Almon parameterization is
enhanced. Indeed, experience shows that the modeling performance of the Almon DCC prescription is
much influenced by the ability of the Almon function to fit the entry values of the parameter vectors a
and b that one would obtain by using an unrestricted rank deficient model with » = 1. This fit can be
improved by first carrying out a reordering of the process components so that the vector entries are as
monotonous as possible, hence fostering a good match between the typical profiles of Almon curves and
the entry values of a and b. The proposed reordering (shuffle) consists in arranging the components in
descending order according to the magnitude of their projection onto the first principal component (the
one that corresponds to the largest eigenvalue) computed using the unconditional covariance matrix
of the available sample. Once the reordering is implemented, the Almon DCC model of the previous
subsection is used. The results in Section 4 show that the Almon shuffle DCC model often exhibits a
better performance than the Almon model.

2.6 The scalar DCC model

The scalar DCC model is by far the most widely used in the literature. In this case, the parameter
matrices A, B € S,, in (2.8) are of the form A = ai,i}, B = bi,i,, with a,b € R. The scalar DCC model
specification is

Qi=(1—a—bS+ae 16/ 1 +bQ1, (2.30)

and the associated constraints have the form

(PC) Positivity constraints: a>0, b>0, Qy=0. (2.31)
(SC) Stationarity constraints: a+b<1 (2.32)
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As for all previously discussed DCC subfamilies, in the non-targeted version of the scalar model, the
extra parameter matrix C' € S,, is intrinsically parametrized by ¢ € RN, N = %n (n+1) by defining
C := math(c), and hence the associated constraints are (2.31) and (2.32) with the additional condition
math(c) > 0.

We conclude this section with Table 2.1 that reports the number of parameters of the matrices A
and B that are necessary in the different models for process dimensions going from five to thirty.

n 5 10 15 20 25 30
Hadamard n(n+1) 30 110 240 420 650 930
Rank Deficient (r=2) 2(2n—-1) 18 38 58 78 98 118
Rank Deficient (r = 1) 2n 10 20 30 40 50 60
Almon 6 6 6 6 6 6 6
Scalar 2 2 2 2 2 2 2

Table 2.1: Number of parameters needed for the different DCC model parameterizations as a function of the process
dimension n. These numbers represent exclusively the parameters obtained in the second stage estimation.

3 Constrained estimation of DCC model parameters

The purpose of this section is to present a constrained optimization scheme adapted to the quasi-
maximum likelihood (QML) estimation of the DCC models previously described and to provide the
main stages of its implementation; details are given in Section D of the TA. The QML approach stems
from the assumptions that the innovations &, appearing in (2.1) are normally distributed and that the
conditional variance and correlation of the data generating process behave according to the Hadamard
DCC equation.

3.1 The log-likelihood function and its gradient

In this subsection the log-likelihood function associated to the DCC model (2.1) with correlation dy-
namics determined by (2.8) and the estimation steps are briefly stated. The issues posed by the need
to handle the parameter constraints are addressed in Subsection 3.2.

Let r = {ry,...,rr} be a sample of size T of n-dimensional observations of the process {r;} and let
® := (A4, B) €8S, xS,, denote the parameters to be estimated, keeping in mind that this is performed
after substituting the targeting estimator defined in (2.9) for the parameter S (in the sequel the symbol S
stands for the targeting estimator instead of the unknown value). The log-likelihood function associated
to the process (2.1) is

T
logL (®;1) = 1, (©;1y), (3.1)
t=1
where 1
I (O;ry) = 3 (nlog(2m) + log det (H;) + vy H; 'ry). (3.2)
The dependence of [; on © is materialized through H;, that explicitly relies on the set of parameters @

through Q; since H; is equal to DtQ:71/2QtQ:71/2Dt. Recall that D; depends on the parameters of

the models used for the conditional volatilities and that are specified in the first stage of the DCC model
construction. These parameters can be estimated consistently in a first stage as explained in [Eng02] and
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in the sequel the symbol D; in (3.2) and all the expressions derived from it stand for the corresponding
estimated version. After this substitution, the expression (3.1) is strictly equivalent to the second stage
log-likelihood function defined in [Eng02].

Consequently, the DCC QML (second stage) estimation problem consists of finding the parameter
value © that maximizes the log-likelihood (3.1) associated to a particular DCC model subjected to
the constraints (IC), (SC), and (PC) associated to it. This can be carried out by using an iterative
optimization method proposed in [CO14], adapted to the different versions of the DCC model defined
in the previous section. For each of these versions, the matrices A, B € S,, in (2.8) are functions of a
parameter vector @ that belongs to an intrinsic parameter space P x P that is specific to each model,
and for which ® = ©(6).

The computation of the estimator © of © via the constrained maximum likelihood optimization
method that is used requires the gradient of the log-likelihood function of each of the DCC model
specifications defined in Section 2. The analytical expressions of those gradients are given in Propo-
sition D.1 in the technical appendix and in Subsection D.2 details are provided about the algorithmic
implementation of Proposition D.1 via matrix recursions.

3.2 Constrained optimization using Bregman divergences

The constrained optimization method proposed to compute the QML estimator of the DCC model
parameters is presented in this subsection. Handling the linear and nonlinear parameter constraints
associated to each of the studied specifications complicates the optimization problem. Standard tech-
niques, like Lagrange duality, often require to solve additional secondary optimization problems. This
difficulty is circumvented by implementing a penalized optimization scheme that uses the so-called
Bregman matrix divergences ([Bre67]) and that provides a solution using the primal space as working
setup. This technique has been introduced in the context of machine learning (see for instance [DT07]
and [KSD09b]) and has shown good performances in the estimation of the heavily parametrized VEC-
GARCH model in [CO14].

3.2.1 Bregman divergences and constrained optimization problems

The Bregman matrix nearness measure is defined as follows: Let X,Y € S,, and let ¢ : S;, — R be
a strictly convex and differentiable function. The Bregman matrix nearness measure associated to ¢ is
defined by Dy(X,Y) := ¢(X) — ¢(Y) — tr (Vo(Y)) " (X — Y)). Different choices of ¢ lead to different
measures, such as the squared Frobenius distance, the von Neumann divergence, and the Burg matrix
divergence. The latter, also referred to as LogDet divergence or Stein’s loss (mainly in the statistics
literature, see [JS61]) is obtained out of the Burg entropy of the eigenvalues {Ay,..., A, } of a positive
definite matrix X, that is ¢(X) := — Y ", log A\; = —logdet(X). The associated Bregman divergence
defined in the space of positive definite matrices X,Y € S; is given by

Dy (X,Y) :=tr(XY ™) —logdet(XY 1) — n. (3.3)

In what follows, the denomination Bregman matrix divergence is used to refer to the Burg divergence.

Bregman divergences are particularly useful in optimization when dealing with positive (semi) def-
initeness constraints (abbreviated as positivity constraints (PC) in this paper). Consider the problem
of minimizing a function f(A) defined on a space of square matrices and subjected to the constraint
A > 0. This is handled by iteratively solving optimization problems associated to penalized local models
of the form

(4) == FAD) 4 TFAD)(A — AD) 1 2(4 — AGYTHAP (A AB) + Dyy(4,49), - (3.4)



Reduction and estimation of non-scalar multivariate volatility models 11

where k € N is the label for the iteration, Vf(A®) and H(A®) are the gradient and the Hessian of
the function f computed at the point A®*), respectively. The penalization term Dj;(A, A®)) in (3.4)
diverges when A approaches the set where the constraints are violated and forces the solution of the
penalized local model to automatically lie in the constrained set. Proceeding this way the constrained
optimization problem is reduced to a sequence of local unconstrained ones.

3.2.2 Bregman divergences for DCC model positivity constraints

The generic expressions of the Bregman divergences associated to the constraints imposed on the differ-
ent DCC models under consideration are written down below in terms of the variables 0 of their intrinsic
parameter space P x P. In view of the different functional characters of the constraints considered, they
can be classified into three groups.

Positive semidefinite (definite) constraints (PSDC): This group of constraints can be generically
written as M (0) = 0, where M : P x P — S, ¢ € N, is a smooth map. In this case, the Bregman

matrix divergence Dy (6,0%)) € R is given by

D (6,0%)) = tr (M(e) ~M(9(k))*1> — log det (M(O) : M(O(k))*l) —q (3.5)

Nonlinear (NLPC) and linear (LPC) positivity constraints: The NLPC are specified by rela-
tions of the form N (8) > 0,4, where N : P x P — R? is a differentiable map and ¢ is the number
of components of the constraint. The corresponding entries of the divergence DN(H,H(k)) € R? are
determined by the relation

D (6,0%)) = (Dy (8,0, = - O)i . (N(O)):

VEm);  Eavemyy, T e B0

Linear positivity constraints (LPC) are a particular case of the previous ones, when N is a linear map.
More specifically, if @ € P x P, we consider linear constraints of the form L () := f — E?Zl Cp,0; > 0y,
with Cy, € M, p, 0; € P, £ € R™, and m < P € N. The corresponding divergences are denoted by
D.(0,0%)) e R™.

3.2.3 The local model for the DCC model, its gradient and associated Jacobian

As already explained in Section 3.2.1, the optimization algorithm is based on a sequence of penalized
local functions that incorporate the Bregman divergences in order to ensure that the constraints are
satisfied at each iteration. More specifically, the solution 0%+ of the local optimization problem after
k iterations is defined by

0+ — argmin f)(9), (3.7
0cPxP

where the local objective function f*) at 0" is given by

7 (0) =(8%)) + Vo £(0%)(0 ~ 6)) + 2(0 — 6% 1M (6 — 6)

S1 So 53
+> L{Du, (0,6%) + > Lli] Dy, (0.6%) + > Lii), Dy (6,6%). (3.8)

j=1 j=1 j=1
In the above expression, ng(a(k)) = 7V910gL(0(k);I') is the gradient of minus the log-likelihood

function which is determined, in the DCC case, by the relation (D.1) in Proposition D.1. The symbol
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H®) denotes the Hessian of the function f computed at the point 0%). The integers si, So, S3 are
the numbers of positive semidefiniteness, nonlinear, and linear constraints, respectively; the symbols
Dy, (0,6%)) € R, j € {1,...,51}, Dn,(0,0%) € R%, j € {1,...,s0}, and Dr,(0,8%) € R™,
je{l,...,s3} denote the Bregman divergences defined in (3.5), (3.6), and the linear version of (3.6),
respectively; Ly € R® Ly € R%2 Lg € R% are vectors whose components control the strength of the
Bregman penalizations, and i,, € R%, j € {1,...,52}, im; € R™, j € {1,...,s3} are vectors of ones.

The local optimization problem in (3.7) is solved by finding the value 8 for which Vo ) (6p) = 0.
The complete expressions of the gradient and associated Jacobian Vg f*) () of the local model (3.8)
for the different DCC specifications are provided in Section E of the technical appendix.

4 Empirical study

The goal of this section is to report on the results of experiments carried out in order to compare the
empirical performances of the different DCC models described in Section 2. For that purpose a dataset
is selected and those models are estimated in various dimensions (from 5 to 30) using the algorithm
presented in Section 3. Their in-sample fit is evaluated with the Akaike information criterion (AIC)
in Subsection 4.2, which also contains a discussion about the heterogeneity and other features of the
point estimates. Statistical tests related to the out-of-sample performances of the different models are
described in Subsection 4.3 and their results are discussed in Subsection 4.4.

4.1 Dataset and competing models

The dataset used for the empirical study consists of the daily closing price quotes of the thirty com-
ponents included in the Dow Jones Industrial Average Index (DJIA) as of October 2013. The data
are downloaded from the Yahoo Finance database. The Yahoo tickers of the stocks used in the study
are AA, AXP, BA, BAC, CAT, CSCO, CVX, DD, DIS, GE, HD, HPQ, IBM, INTC, JNJ, JPM, KO,
MCD, MMM, MRK, MSFT, PFE, PG, T, TRV, UNH, UTX, VZ, WMT, XOM. The dataset has been
prepared adjusting the quotes with respect to stock splits and dividend payments and the dates at
which at least one of the constituents was not quoted were removed. The price quotes are taken from
August 25th, 1998 to August 1st, 2013. The resulting sample contains 3750 observations. The first 3000
quotes (August 25th, 1998 - August 9th, 2010) are used for model estimation and the last 750 are kept
for out-of-sample testing. Another similar dataset covering a different period has been processed and
studied; the corresponding results are available in Section G of the technical appendix.

Data preprocessing using the Capital Asset Pricing Model (CAPM) In order to account
for the common dynamical factor that influences the assets under consideration, a static unconditional
CAPM one-factor model is used for each asset i € {1,2,...,n}. It is of the form Y; ; = af + 57 X, + Z; 4,
where for each time index ¢, Y; ; is the log-return of asset ¢, X, is the value of the chosen common factor,
Z; ¢+ is the regression error term, and «f, 37 are the intercept and slope coefficients, respectively.

In the DCC empirical experiments presented in this section, the CAPM regression is used in the
following way: let T.s; and T,,: be the sample lengths taken for in-sample estimation and out-of-
sample testing, respectively, and let T := Tes + T,y be the total number time series observations.
The log-returns of the S&P500 index are used as the common factor X;. The CAPM regression is
estimated by ordinary least-squares for each asset ¢ using the observations ¢ € {1,...,T.s}, and the
OLS residuals Z;; are stored. Then, following the same approach as in Chapter 8 of [Eng09], these
residuals Zy := (Z14, Za g, - - - Znyt)T are used as the observed returns r; appearing in (2.1). Next, the
two-stage estimation of the DCC models is applied, as explained in Section 2; more specifically, in the
first stage, GARCH(1,1) models are fit to the components of Z;, and in the second one the different DCC
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models are estimated. The complete model (with the CAPM step) is thus what is called “FACTOR
DCC” in Chapter 8 of [Eng09], except that the factor (that is, the S&P 500 index) volatility and its
correlations with the thirty assets are not modeled. Instead of simple GARCH(1,1) models as in (2.2),
other prescriptions can be used that incorporate, for example, an asymmetry effect.

In order to perform the out-of-sample analysis, the corresponding out-of-sample residual returns

Z:={Zr,,1,...,Z7} are computed using the relations
Ziv=Yig—al —B3Xy, i€{l,....,n}, te{Tow+1,...,T}, (4.1)

where &? and BZB are obtained using the T.s in-sample observations and subsequently kept for the
out-of-sample assessment of the empirical performances of the DCC models. When generating the
out-of-sample forecasts of the H; matrices of each DCC model, the values of the parameter estimates
obtained using only the in-sample observations are also kept.

The CAPM based data preprocessing step is not absolutely necessary for the models to show good
performance; its relevance depends on the nature of the data and it is up to the practitioner to carry
out this step. The empirical study reported in this section has also been implemented without CAPM
preprocessing and the conclusions drawn from these results are broadly similar to those drawn from the
results presented in the sequel.

The competing models Results are reported for six different DCC model parameterizations, namely:
(i) the Hadamard DCC, (ii) the rank deficient DCC with rank r = 2, (iii) the rank deficient DCC with
rank 7 = 1, (iv) the Almon DCC, (v) the Almon shuffle DCC, and (vi) the scalar DCC. Some of these
models are particular cases of others according to the inclusion relations represented in Figure 1.

Almon DCC

|

Hadamard DCC +—— Rank Deficient DCC (r = 2) «—— Rank Deficient DCC (r = 1) «—— Scalar DCC

I

Almon shuffle DCC

Figure 1: Inclusion hierarchy of the models. The symbol B +— A means “A is a particular case of B”.

4.2 In-sample results

The model estimations are performed in various dimensions ranging from 5 up to 30 in such a way that for
the n-dimensional case the first n assets are picked in the DJIA dataset arranged in alphabetical order.
The estimations are carried out conditionally on the estimated standardized (“degarched”) residuals
and the targeting estimator of .S, which are the same for all the models. Hence the computed optimal
values of the log-likelihood functions are fully comparable across models.

Goodness-of-fit comparisons A consequence of the inclusion relations shown in Figure 1 is that
the optimal log-likelihood values obtained in the estimation of these models for a given sample need to
be ordered accordingly. More specifically, the optimal value resulting from the estimation procedure for
the Hadamard DCC model has to be the smallest among them all, since it is minus the log-likelihood
function which is minimized, and the other models need to respect the hierarchy established by the
diagram in Figure 1. In Table 4.2 these values and the associated AIC statistics are reported, with
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AIC defined as AIC := (—2log L + k log Test)/Test, where T.q is the size of the sample reserved for
estimation, log L is the obtained maximal value of the log-likelihood function associated to the model
and the sample used for estimation, and k is the number of parameters of the model. A lower AIC value
indicates a better trade-off between the quality of the model fit and the number of parameters used to
achieve it.

The values reported in the table reveal that the Hadamard DCC model has, as should be the case,
the smallest minus log-likelihood values after convergence of the algorithms, and that the hierarchy of
models in terms of the maximized values is respected. At the same time, the rank deficient DCC models
with rank one (in four cases) and rank two (in two cases) exhibit the best trade-off between fit and
parsimony according to the AIC statistics. In all cases, the Hadamard models have the largest AIC
values, which is not a big surprise given that they have many more parameters than the other models
(see Table 2.1). It is interesting to notice that the differences in AIC values between the Hadamard
model and all the other models are clearly larger than the differences between the other models. If the
six models are ranked by attributing the score 6 to the worst AIC fitting model (the Hadamard), the
score 5 to the next, up to 1 to the best performing model, and these scores are added up through the
six dimensions, the best performing model is the rank one deficient model, the second best model is the
rank two deficient model, the third is the Almon shuffle, and the fourth the scalar. These results give a
first indication that the rank one deficient and Almon shuffle models seem to be worth using in practice,
in addition to the scalar model.

n Scalar Almon Almon Shuffle Rank Deficient Rank Deficient Hadamard
(r=1 (r=2)
-logL -13.4686 -13.4690 -13.4713 -13.4728 -13.4735 -13.4736
5 AICrank -26.9258%  -26.9239° -26.92862 -26.9289" -26.92504 -26.91736
-logL -27.8050 -27.8059 -27.8084 -27.8149 -27.8178 -27.8186
10 AICrank -55.5888%  -55.5878° -55.59282 -55.5964! -55.59023 -55.54396
-logL -41.8992 -41.9006 -41.9026 -41.9164 -41.9235 -41.9266
15 AICrank -83.7671°  -83.7671% -83.77123 -83.7829! -83.77842 -83.66336
-logL -56.4619 -56.4629 -56.4662 -56.4860 -56.4969 -56.5068
20 AICrank -112.8824%  -112.8819° -112.8885° -112.9053! -112.90182 -112.6935°
-logL -71.0132 -71.0148 -71.0172 -71.0357 -71.0523 -71.0724
25 AICrank -141.9750°  -141.97574 -141.9805° -141.98802 -141.9893! -141.6614°
-logL -85.9028 -85.9063 -85.9065 -85.9347 -85.9565 -85.9935
30 AICrank -171.7443°  -171.74874 -171.7490° -171.76942 -171.7743! -171.3070°
AIC scorer®k 26* 27° 163 8! 132 36°

Table 4.2: Normalized values of minus the log-likelihood function (-log(L)/Test), and associated AIC statistics. The
smallest values of minus the log-likelihood function are displayed in black bold. Exponents on the AIC row
indicate the rank of the model from 6 (the worse) to 1 (the best). The “AIC score” row at the bottom contains
aggregated ranks by models. Figures in red point to the model that exhibits the lowest AIC value.

Features of the point estimates Since non-scalar DCC models allow for heterogeneity in the pa-
rameters that drive the conditional correlations, some information on their estimates is of interest. Table
4.3 reports on the mean, standard deviation, minimum, and maximum of the estimates of the elements
of the matrices A and B of the DCC process written as in (2.8), for each model and dimension. If these
matrices are functions of intrinsic parameters of lower dimension than in the Hadamard case, then the
matrices implied by the intrinsic parameter estimates are computed and the corresponding statistics are
obtained. Obviously, for the scalar model, the mean, maximum, and minimum are equal to the point
estimate of the corresponding scalar parameters. The following general conclusions can be drawn:
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Matrix A
n MacGyver Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
mean (median)  0.0103 (0.0086)  0.0063 0.0093 0.0071 0.0092 0.0064 0.0065
5 std 0.0090 - 0.0102 0.0054 0.0106 0.0039 0.0042
min 0.0000 0.0063 0.0004 0.0021 -0.0000 0.0026 0.0026
max 0.0432 0.0063 0.0493 0.0276 0.0520 0.0194 0.0201
mean (median)  0.0118 (0.0101)  0.0060 0.0066 0.0065 0.0063 0.0060 0.0062
10 std 0.0089 - 0.0036 0.0025 0.0028 0.0003 0.0013
min 0.0000 0.0060 -0.0015 0.0025 0.0012 0.0056 0.0045
max 0.0432 0.0060 0.0189 0.0124 0.0122 0.0071 0.0112
mean (median)  0.0101 (0.0079)  0.0044 0.0047 0.0048 0.0045 0.0044 0.0045
15 std 0.0082 - 0.0038 0.0029 0.0035 0.0008 0.0014
min 0.0000 0.0044 -0.0032 0.0005 -0.0022 0.0021 0.0026
max 0.0432 0.0044 0.0243 0.0193 0.0197 0.0055 0.0100
mean (median)  0.0099 (0.0074)  0.0034 0.0033 0.0037 0.0031 0.0035 0.0035
20 std 0.0089 - 0.0026 0.0022 0.0023 0.0005 0.0005
min 0.0000 0.0034 -0.0039 0.0004 -0.0030 0.0027 0.0021
max 0.0535 0.0034 0.0162 0.0144 0.0110 0.0052 0.0042
mean (median)  0.0093 (0.0069)  0.0031 0.0029 0.0032 0.0030 0.0031 0.0031
95 std 0.0093 - 0.0023 0.0018 0.0017 0.0005 0.0003
° min 0.0000 0.0031 -0.0027 0.0008 -0.0010 0.0022 0.0021
max 0.0545 0.0031 0.0155 0.0130 0.0098 0.0046 0.0035
mean (median)  0.0093 (0.0070)  0.0027 0.0025 0.0027 0.0025 0.0026 0.0027
30 std 0.0092 - 0.0023 0.0019 0.0021 0.0005 0.0002
min 0.0000 0.0027 -0.0040 0.0004 -0.0021 0.0020 0.0020
max 0.0592 0.0027 0.0138 0.0112 0.0131 0.0047 0.0031
Matrix B
n MacGyver Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
mean (median)  0.8748 (0.9673)  0.9815 0.9728 0.9694 0.9725 0.9819 0.9788
5 std 0.2433 - 0.0121 0.0170 0.0126 0.0106 0.0057
min 0.0006 0.9815 0.9461 0.9265 0.9436 0.9550 0.9672
max 0.9945 0.9815 0.9928 0.9944 0.9937 0.9956 0.9881
mean 0.8748 (0.9647)  0.9801 0.9742 0.9667 0.9733 0.9785 0.9772
10 std 0.2617 - 0.0088 0.0228 0.0148 0.0051 0.0022
min 0.0000 0.9801 0.9478 0.8785 0.9197 0.9641 0.9743
max 0.9949 0.9801 0.9928 0.9962 0.9962 0.9865 0.9842
mean (median)  0.8874 (0.9658)  0.9827 0.9797 0.9737 0.9788 0.9822 0.9815
15 std 0.2309 - 0.0070 0.0158 0.0141 0.0009 0.0049
min 0.0000 0.9827 0.9626 0.9258 0.9297 0.9808 0.9653
max 0.9975 0.9827 0.9942 0.9984 0.9970 0.9851 0.9878
mean (median)  0.8769 (0.9672)  0.9866 0.9854 0.9806 0.9857 0.9862 0.9851
2 std 0.2415 - 0.0038 0.0104 0.0073 0.0013 0.0029
min 0.0000 0.9866 0.9758 0.9434 0.9601 0.9840 0.9805
max 0.9975 0.9866 0.9951 0.9985 0.9985 0.9900 0.9942
mean (median)  0.8752 (0.9724)  0.9862 0.9857 0.9816 0.9848 0.9860 0.9853
95 std 0.2490 - 0.0026 0.0094 0.0076 0.0007 0.0028
min 0.0000 0.9862 0.9791 0.9465 0.9485 0.9851 0.9812
max 0.9975 0.9862 0.9925 0.9964 0.9977 0.9881 0.9950
mean (median)  0.8776 (0.9718)  0.9866 0.9858 0.9836 0.9844 0.9867 0.9858
30 std 0.2391 - 0.0020 0.0099 0.0089 0.0021 0.0029
min 0.0000 0.9866 0.9781 0.9383 0.9420 0.9839 0.9815
max 0.9975 0.9866 0.9920 0.9985 0.9974 0.9943 0.9964

Table 4.3: Estimated parameter matrices A and B of (2.8). Mean, median, standard deviation, minimum and maximum
of the entries of the estimated matrices are reported.
introduced in [Eng08] based on the use of bivariate scalar DCC models; in this case the median values of the
estimates are reported between parentheses.

“MacGyver” stands for the method with this name
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e The A mean values decrease towards zero in all models as the dimension n increases: they are
approximately divided by a factor of 2 to 3 in dimension 30 relative to dimension 10. This is a
well-known phenomenon for the scalar DCC model, already mentioned in [Eng02] and discussed
in [PESS14]. The latter paper shows by a simulation study that the a parameter is subjected
to a downward bias and that variance targeting is responsible for that. Our results suggest that
the same problem occurs in non-scalar models. Moreover, the mean values are very close to each
other across the different models. This is less the case in dimension five, a result probably due to
the arbitrary selection of the assets. Taking this case aside, this suggests that the scalar model
estimates the average value of the elements of A, and that all models are likely to be subjected
to the downward bias problem. Further insight on this issue could be obtained by a simulation
study which is left for further research.

e The A standard deviations (which measure the degree of heterogeneity between the elements of
A) decrease as the dimension increases (though not monotonically, see dimensions 10 and 15,
depending on the model). The decrease is more pronounced between dimensions 5 and 15 than
between dimensions 20 and 30.

e For every dimension, the largest degree of heterogeneity in A among non-scalar models occurs for
the Hadamard case (with one minor exception for dimension 5 where it is the second largest). The
rank deficient models have a slightly smaller degree of heterogeneity than Hadamard, while the
Almon models exhibit much less heterogeneity than the previous three models as a consequence
of their more parsimonious parameterization.

e The B mean values increase slightly towards unity until dimension 20, and stay approximately
the same for dimensions 20, 25, and 30.

e The B standard deviations decrease globally (comparing dimensions 10 and 30), with some inter-
mediate ups and downs, as the dimension increases.

Table 4.3 also provides the statistics of the estimates coming from the MacGyver method proposed
in [Eng08]. For dimension 30, this consists in estimating all the bivariate scalar DCC models that can
be obtained using distinct combinations (there are 435 of them) of the 30 assets in question, thus getting
as many point estimates of a and b. For each dimension smaller than 30 (except 5), the estimates for the
corresponding group of assets are obtained in this way (e.g. the distinct pairs of assets among the first
ten assets are used for dimension 10, which provides 45 estimates that are a subset of the 435 obtained
for dimension 30). For dimension 5 too little combinations are available and hence six groups of five
assets are formed, (1-5, 6-10, until 26-30) which yield in total 60 estimates for the six groups. For each
dimension, the MacGyver estimates exhibit much more heterogeneity than the different DCC models do.
This is a consequence of the positive semidefiniteness constraints imposed on the DCC models to which
the MacGyver estimator is not exposed. Additionally, unusual values arise sometimes in the MacGyver
case in comparison with the DCC estimates; more specifically, there are values of b close to zero (see
the minimum MacGyver values) and of a farther away from zero (see the MacGyver maximum values).
The mean values of the MacGyver estimates of a are therefore larger than the corresponding medians
(reported in the tables), and the reverse is true for the b estimates. The median values of the a and b
estimates are hardly influenced by the dimension.

Rank one deficient and Almon shuffle point estimates Given that the AIC statistics favor these
models, more information on the estimates of the corresponding parameters is of interest. Figure 2 plots
the values of the entries of the parameter vector a for both models in dimension 30, ordered according
to the Almon shuffle prescription. The figure also shows the corresponding estimate implied by the
scalar model, which is the square root of the parameter a in (2.30). The figure illustrates the flexibility
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of the rank one deficient and Almon models with respect to the scalar one. The pattern of estimates of
the entries of a of the Almon model is concave, whereas for b (the corresponding figure is provided in
the technical appendix) it is convex.

For the rank one deficient model, the estimates are naturally more fluctuating. The scalar model
estimates correspond roughly to the average values of the individual estimates of the other models.

The estimates of the entries of @ and b in the Almon shuffle model are computed by using the Almon
function defined in Section 2.4 using the estimates of the three parameters of each Almon function for the
dimensions considered (the relevant tables containing them are provided in the technical appendix). As
the dimension increases, for the function defining a, the estimates of the parameters in the exponential
function (as and as) tend to zero, and the estimates of the constant term (a1) tend to minus one. This
implies that the entries of a tend to zero and are more homogeneous in higher dimensions. These trends
seem to saturate beyond dimension 15. Regarding the parameters of the Almon function defining b, the
three parameters tend to zero as the dimensions increases, so that the elements of b tend to one from
below.
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Figure 2: Estimates of the entries of the parameter a of the rank one deficient and Almon shuffle models for the thirty assets
case in the order determined by the Almon shuffle estimation.
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Computational effort and starting values Table 4.4 provides the time and the number of gradient
calls necessary to carry out the estimation of the various DCC models in different dimensions. The
figures provided for the non-scalar models are relative to the computational effort necessary to estimate
the scalar model in the corresponding dimension. An important consideration that should be kept in

Relative computation time/Relative number of gradient calls.

n Almon  Almon Shuffle Rank Deficient Rank Deficient Hadamard
(r=1) (r=2)
5 time 0.6599 0.7783 0.7828 6.5984 1.0486
grad calls  0.6613 0.7742 0.6452 3.1935 0.6774
10 time 2.5637 5.4408 1.7209 28.3579 2.8449
grad calls  0.7500 1.2333 0.9333 3.2667 0.9000
15 time 3.0451 16.9112 6.7186 14.4835 2.6498
grad calls 1.1190 4.8095 1.7619 2.5952 1.0952
20 time 1.1361 0.9467 2.7956 2.6302 0.6662
grad calls 1.2449 1.0816 1.8163 1.8571 0.7959
95 time 1.2971 1.8973 2.0043 2.6563 0.5554
grad calls  1.4286 1.7959 1.7143 2.1837 0.8163
30 time 1.8630 1.9192 1.9769 1.9992 0.3627
grad calls  1.9792 2.3750 2.0625 1.8958 0.7083

Table 4.4: Time and number of gradient calls necessary to carry out the estimation of the various DCC models under
consideration in different dimensions. The figures are relative to the computational effort necessary to estimate
the scalar model in the corresponding dimension. Several considerations sometimes make those figures not
directly comparable: see explanations in page 17.

mind and that makes those figures not fully comparable is that due to the different sensitivities of the
log-likelihood functions of the different models to variations in the intrinsic parameters, the stopping
tolerances in the optimization algorithm had to be tuned for each different parameterization in order
to secure reasonable results (10~* for the Hadamard case and rank deficient parameterizations; for the
Almon models, 10~* in dimensions up to fifteen and 107> for n = 20, 25, 30). Consequently, the relative
times reported in the table should not be interpreted as comparable numerical efficiency measures,
but rather as an indication that the estimation of the more complex models is feasible in terms of
computation time when compared to the scalar model.

Additionally, the figures in Table 4.4 are influenced by the choice of initial values in the implementa-
tion of the optimization algorithm. Our experience shows that a good approach to this question consists
of using the estimated values for the scalar model as initial values for the estimation of the non-scalar
ones. More precisely, the scalar model is estimated (for each dimension) using the same initial condition
(a =0.2,b=0.7) and then, the resulting A and B matrices are fed as initial conditions to the optimiza-
tion algorithm for the estimation of each of the other models. This way to proceed is reasonable in view
of the model hierarchy depicted in Figure 1 and has important consequences at the time of avoiding the
difficulties caused by the non convex character of the optimization problem that needs to be solved.

It is interesting to observe that the built-in nonlinearities of some of the non-scalar parameterizations
(exponential for Almon and quadratic for rank deficient models) have sometimes a bigger impact on
the computational effort than the dimension of the intrinsic parameter space (compare for example the
values exhibited by the Hadamard parameterization with those associated to rank two deficient models).

The main conclusion that can be drawn from the data in Table 4.4 is that from a computational effort
standpoint, non-scalar models are quite affordable with respect to the scalar model in the dimensions
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considered.

4.3 Out-of-sample specification tests

In this section are presented the specification tests used in order to assess the out-of-sample one-step
ahead forecasting performance of the competing DCC models. The discussion of the results follows in
the next subsection. The first test is based on the use of multivariate variance standardized returns and
the next three on the use of portfolio returns.

4.3.1 Model confidence set based on correlation loss functions

The different models are compared by computing the model confidence set (MCS) of [HLN03, HLN11]
with the following loss function constructed using the GARCH standardized returns in (4.3) and the
conditional correlation matrices implied by the parameter estimates of the models:

2 2
dy = m . Z (€i€jt — Pije)” (4.2)
1<j=2,...,n
where p;;; is the (i,j)-entry of the model dependent conditional correlation matrix Ry introduced
in (2.4). The loss function is based on the fact that if (2.1) is a correct specification, the GARCH
standardized returns

e =D, ?r, (4.3)

have the correlation matrix R; defined in (2.4). The results are provided in Table 4.5 which shows,
for a given number of assets, the order of exclusion of models from the confidence set: 6 means that
the corresponding model was the first to be excluded (with its p-value underneath), 1 means that the
corresponding model was the last one. The MCS at 90% confidence level is identified by the set of bold
red figures and at 95% by the union of the figures in bold red and bold black.

4.3.2 Tests based on portfolio returns

The performances of the competing DCC models can be compared indirectly by running tests on port-
folios constructed using the assets whose returns are modeled. Let w; € R™ denote a vector of portfolio
weights at date ¢, let p; = w, r; be the portfolio return, and Ug,t = w/ H;w; the corresponding variance,
where H; is the relevant conditional covariance matrix of r; (see (2.1)). Two kinds of portfolios are

constructed:

e The minimum variance portfolio (MVP), defined by choosing a weight vector w; that minimizes
w ! Hyw subjected to the constraint i) w; = 1. The solution of this problem is given by w; =
H;',/(i] H7'4,). This expression is used to construct the sequence of variance minimizing
portfolios associated to each model.

e The equally weighted portfolio (EWP), implied by the weight vector w; := i,,/n for each date t.

Three tests are considered, based on the observation that under a correct specification of the
type (2.1), the standardized portfolio return y; = w, r;/\/w, Hyw;, has unconditional variance equal

to one. The tests assess the validity of different hypotheses for the series y; = w;'— ri/\/ W, IA{twt con-

structed using the one-step ahead forecast of the conditional covariance matrices IAJt implied by each of
the estimated models under consideration.

Engle-Colacito regression test ([EC06)): It is constructed by estimating the regression

Gi—1=A+u, te{Tog+1,...,T} (4.4)
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where u; is the error term and A is the intercept coefficient. The test assesses the null hypothesis that A
is equal to 0 using a heteroskedasticity and autocorrealtion consistent (HAC) ¢-statistic ([And91]). The
results are presented in Tables 4.6 and 4.7 that contain the HAC t-statistics and their p-values.

Model confidence set (MCS) based on the predictive ability for squared portfolio returns:
The one-step ahead predictive ability of the models is evaluated by computing model confidence sets

using the loss function
2

dt = ((W:rt)Q - W:ﬁtwt> . (45)

The results of this procedure are provided in Tables 4.8 and 4.9. The information that they contain is
organized in the same way that was already described at the end of Section 4.3.1.

Value-at-Risk backtesting and the dynamic quantile test (HIT test): The backtesting of the
dynamical structure of the Value-at-Risk (VaR) violations, that is, the occurrences for which w, r; <
VaR,(t), can be used as a tool to assess the performance of the model used to forecast the VaR. Let
HITo(?) = 1{wrr,<vaRa(r)}- Under a correct model specification, E [HIT4(t)] = o and the random
variables {HITQ(t)}te{Test+17__,7T} are serially independent and independent of other elements in the
conditioning information set, like the VaR,(t) itself. These features are tested by using the HIT-test

defined in [EMO04], which is a F-test on the regression

HIT, (t) — HITo = A + B1HITo(t — 1) + - - + BHITo(t — 1) + Brp1 VaRa (t) + uy, (4.6)

b

where HIT,, = X:Z;Tew 41 HIT,(t) and [ is the chosen number of lags. The null hypothesis is that all
t st

ou
the regression coefficients, including the intercept, are equal to zero. In order to compute VaR,(t), use

is made of the fact that the forecasted portfolio returns p; are Gaussian with zero mean and estimated
variance 62, = w/; Hyw; and hence VaRq(t) = 7! ()5}, where @ is the standard normal cumulative
distribution function.

The results of this test with lag order [ = 5 for the two types of portfolios are described in Tables 4.10
and 4.11. For each portfolio cardinality, the tables contain the hit averages HIT,, for the confidence

levels 1, 5, and 10%, as well as the corresponding p-values of the F-test on the regression (4.6).

4.4 Results of the out-of-sample specification tests

The four tests presented in the previous subsection are applied in several dimensions ranging from 5 up
to 30 in such a way that for the n-dimensional case, the first n assets in the DJIA dataset are picked
up arranged in alphabetical order. The conclusions about the results of the tests are presented below.

1) MCS for the correlation of the standardized returns (Table 4.5): The first observation that
can be made is that the size of the MCS goes down when the dimension increases. The MCS contains
5 or 6 models for dimensions up to 15. It contains one model for n = 20, and two models for n = 25
and 30. These models are always Almon or Almon shuffle. The Almon shuffle model performs relatively
well in all dimensions (with a score of 8), distantly followed by the Almon and rank one deficient models
(scores 20), the scalar model having the fourth score (22). We emphasize that these MCS results do not
imply that the different models produce on average very different correlation forecasts (when averaging
is done with respect to all 435 correlation series for each model). An advantage of the MCS approach
is that it discards a model if it is found to be significantly (at a pre-specified level) less well performing
than the other models in the set.

2) Tests based on the use of portfolio returns.

e Engle-Colacito regression test (Tables 4.6-4.7): The test results are the same in most cases
across models for each dimension, that is, rejections (or non-rejections) at the level of 5% occur
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MCS for the correlation of the standardized returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 Position 5 4 1 3 6 2
p-value  0.008 0.073 1.000 0.228 0.005 0.228
10 Position 5 3 1 4 6 2
p-value  0.190 0.433 1.000 0.260 0.190 0.433
15 Position 3 5 4 6 2 1
p-value  0.242 0.127 0.242 0.061 0.811 1.000
20 Position 3 6 5 4 2 1
p-value  0.003 0.003 0.003 0.003 0.026 1.000
25 Position 3 6 5 4 2 1
p-value  0.002 0.000 0.001 0.002 0.074 1.000
30 Position 3 6 4 5 2 1
p-value  0.006 0.000 0.006 0.001 0.394 1.000
Score 22 30 20 26 20 8

Table 4.5: Model confidence sets (MCS) constructed using the loss function (4.2) based on the correlation of the stan-
dardized returns defined in (4.3). For each model and dimension, the integer value in the first row indicates
the order of elimination of the model from the MCS (6 stands for the first eliminated model, 5 for the second
eliminated model, and so on). In the second row we report the p-value of the test leading to the decision of
eliminating the given model from the MCS. The set of integer values printed in bold red identifies the MCS at
the confidence level of 90%. The union of integer values printed in bold black and bold red identifies the MCS
at the confidence level of 95%. The score of each model in the last row is the sum of the integer values of the
six dimensions.

for all models, with the exception of dimension 25 for MVP (no rejection for scalar and Almon
shuffle) and EWP (no rejection for the Hadamard model). However, when differences of this kind
happen, the p-values are very close to 5%.

e MCS for the equal predictive ability (EPA) of squared portfolio returns (Tables 4.8-
4.9): The results do not favor systematically a particular model. For minimum variance portfolios,
the model confidence sets at the 95% level (90% in a few cases) include all the models. The
reported model scores favor the rank one deficient model. For equally weighted portfolios, the

model confidence sets do not include all six models, and they only include the scalar model in
dimensions 10, 15, and 20.

e VaR backtesting and the dynamic quantile test (HIT test, Tables 4.10-4.11): For each
dimension, the percentages of VaR violations (at 1, 5, and 10% confidence) and the p-values of
the F-tests of independence are in most cases similar across models.

The results of the three tests based on portfolio returns clearly indicate that the different DCC
models have more or less the same performance in terms of out-of-sample specification tests. No model
dominates systematically the others, and no model is systematically dominated. This may be due to
the fact that the different DCC models, and consequently these test results, rely on the same univariate
GARCH models for the conditional variances. These conditional variances appear as diagonal elements
in the matrices H; that are used at the time of running the tests, and they affect the results also through
the covariances deduced from the correlations and standard deviations. Consequently, the test results
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Engle-Colacito regression test for the minimum variance portfolio returns.

22

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 t-stats  -3.81% -3.77* -3.58% -3.70* -3.87* -3.49%
p-value 0.00 0.00 0.00 0.00 0.00 0.00
10 t-stats 0.39 0.30 0.38 0.25 0.33 0.29
p-value 0.70 0.76 0.71 0.81 0.74 0.77
15 t-stats 0.38 0.66 0.40 0.49 0.43 0.41
p-value 0.71 0.51 0.69 0.63 0.67 0.68
20 t-stats 0.58 1.01 0.72 0.82 0.62 0.50
p-value 0.56 0.31 0.47 0.41 0.54 0.62
95 t-stats 1.96 2.77* 2.29% 2.31% 2.06* 1.83
p-value 0.05 0.01 0.02 0.02 0.04 0.07
30 t-stats 2.58* 3.63* 2.73* 3.04* 2.73* 2.35%
p-value 0.01 0.00 0.01 0.00 0.01 0.02

Table 4.6: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept A of the Engle-Colacito
regression (4.4) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
A = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.

Engle-Colacito regression test for the equally weighted portfolio returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 t-stats -2.42* -2.48%* -2.32* -2.41%* -2.54* -2.23%
p-value 0.02 0.01 0.02 0.02 0.01 0.03
10 t-stats  -2.00% -2.30* -2.08* -2.36* -2.13* -2.32%
p-value 0.05 0.02 0.04 0.02 0.03 0.02
15 t-stats -1.70 -1.62 -1.89 -1.60 -1.71 -1.80
p-value 0.09 0.11 0.06 0.11 0.09 0.07
20 t-stats  -2.84* -2.57* -2.63* -2.50% -2.82% -3.20%*
p-value 0.00 0.01 0.01 0.01 0.00 0.00
925 t-stats -2.31* -1.87 -1.98%* -2.03* -2.25% -2.63*
p-value 0.02 0.06 0.05 0.04 0.02 0.01
30 t-stats  -2.97* -2.82% -2.87* -2.68% -2.86* -3.33*
p-value 0.00 0.00 0.00 0.01 0.00 0.00

Table 4.7: Results of the Engle-Colacito regression test. The ¢-stat values refer to the intercept A of the Engle-Colacito
regression (4.4) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
A = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.

are probably mostly influenced by the common GARCH components of the different models and the
differences between the dynamic correlations of the different models are blurred by the common first
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MCS of EPA for the minimum variance portfolio squared returns.
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Almon Shuffle

n Scalar Hadamard Rank Deficient Rank Deficient Almon
(r=1) (r=2)
5 Position 2 6 1 3 5 4
p-value  0.562 0.214 1.000 0.562 0.214 0.562
10 Position 4 6 3 5 2 1
p-value  0.379 0.071 0.379 0.379 0.379 1.000
15 Position 5 3 1 4 2 6
p-value  0.368 0.676 1.000 0.676 0.676 0.368
20 Position 4 2 1 5 3 6
p-value  0.339 0.932 1.000 0.339 0.836 0.339
25 Position 4 6 1 3 2 5
p-value  0.618 0.100 1.000 0.618 0.618 0.618
30 Position 3 6 1 5 2 4
p-value  0.544 0.054 1.000 0.312 0.808 0.544
Score 22 29 8 25 16 26
Table 4.8: Model confidence sets based on the predictive ability for squared portfolio returns using the loss function defined
in (4.5). See the caption of Table 4.5 for an explanation of the table entries.
MCS of EPA for the equally weighted portfolio squared returns.
n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 Position 4 5 2 3 6 1
p-value  0.000 0.000 0.029 0.000 0.000 1.000
10 Position 1 4 2 6 3 5
p-value 1.000 0.000 0.438 0.000 0.000 0.000
15 Position 3 2 6 1 4 5
p-value  0.486 0.772 0.001 1.000 0.484 0.003
20 Position 5 2 3 1 4 6
p-value  0.061 0.374 0.374 1.000 0.061 0.000
925 Position 5 1 2 3 4 6
p-value  0.000 1.000 0.674 0.000 0.000 0.000
30 Position 5 3 4 1 2 6
p-value  0.000 0.036 0.002 1.000 0.036 0.000
Score 23 17 19 15 23 29

Table 4.9: Results of the model confidence set of EPA for equally weighted portfolio squared returns. The loss function is
defined in (4.5). See caption of Table 4.5 for an explanation of the table entries.
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HIT test of the minimum variance portfolio returns.
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n Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
1% 0.40 0.40 0.53 0.40 0.53 0.53
p-value  1.0000 1.0000 0.9999 1.0000 1.0000 0.9999
5 5% 3.60 3.47 3.60 3.60 3.60 3.74
p-value  0.3355 0.2632 0.3367 0.3349 0.3337 0.5322
10% 8.95 8.54 8.54 8.54 8.81 8.68
p-value 0.5005 0.2296 0.2278 0.2292 0.4985 0.4310
1% 1.60 1.47 1.47 1.47 1.47 1.47
p-value  0.9916 0.9924 0.9940 0.9933 0.9955 0.9946
10 5% 4.81 4.81 4.81 4.81 4.81 4.67
p-value  0.7859 0.7784 0.7780 0.7850 0.7894 0.9189
10% 7.34 7.34 7.74 7.34 7.48 7.34
p-value 0.8484 0.8423 0.7044 0.7633 0.8345 0.8480
1% 1.07 1.60 1.34 1.47 1.34 1.20*
p-value  0.0994 0.1511 0.3995 0.1273 0.0579 0.0105
15 5% 4.94 4.54 4.67 4.81 5.07 4.81
p-value 0.8766 0.6078 0.6573 0.5982 0.8753 0.8643
10% 8.54 9.08 8.68 9.21 8.54 8.81
p-value  0.9149 0.9735 0.9310 0.9350 0.9061 0.9493
1% 1.34% 1.47 1.34%* 1.34%* 1.34%* 1.34%
p-value  0.0314 0.0939 0.0295 0.0332 0.0305 0.0317
2 5% 4.94 4.81 4.94 4.81 5.07 4.81
p-value  0.9438 0.9355 0.9262 0.9370 0.9476 0.9107
10% 8.81 10.28 9.61 10.01 8.81 8.81
p-value  0.9216 0.9227 0.9930 0.9932 0.9157 0.9228
1% 1.07 1.60 1.47 1.47 1.20 1.07
p-value  0.9990 0.2535 0.5740 0.1508 0.3132 0.9990
95 5% 4.67 5.34 5.07 4.81 4.81 4.67
p-value  0.8538 0.3596 0.9060 0.4802 0.8694 0.8544
10% 11.21 12.15 11.62 11.35 11.48 10.95
p-value  0.9361 0.9297 0.9829 0.9757 0.9566 0.9548
1% 1.07 1.60 1.20 1.34 1.20 1.07
p-value 0.9997 0.6447 0.2330 0.4011 0.2327 0.9997
30 5% 4.94 5.87 5.21 5.61 5.07 5.07
p-value  0.3227 0.2609 0.7368 0.8300 0.3966 0.4063
10% 10.95 12.42 11.75 11.88 11.62 10.81
p-value  0.5710 0.8997 0.8530 0.8707 0.7243 0.6226

Table 4.10: Results of the HIT test.

For each asset cardinality n and model we report the average number of VaR

violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (4.6) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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HIT test of the equally weighted portfolio returns.
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n Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
1% 0.53 0.67 0.67 0.67 0.53 0.67
p-value  0.9864 0.9986 0.9987 0.9985 0.9870 0.9981
5 5% 3.20 3.20 3.20 3.20 3.20 3.20
p-value  0.0982 0.0985 0.0963 0.0986 0.0995 0.0975
10% 8.28 8.14 8.14 8.14 8.14 8.28
p-value  0.9162 0.9483 0.9487 0.9481 0.9483 0.7887
1% 1.34 1.34 1.34 1.34 1.34 1.34
p-value 0.9959 0.9949 0.9948 0.9951 0.9956 0.9944
10 5% 4.01 4.01 4.01 4.01 4.01 4.01
p-value 0.4566 0.4355 0.4183 0.4350 0.4543 0.4417
10% 6.94 6.94 6.94 6.68 6.94 6.81
p-value  0.2370 0.3799 0.3659 0.1903 0.2331 0.2884
1% 2.00 2.00 2.00 2.00 2.00 2.00
p-value  0.6435 0.6407 0.6429 0.6388 0.6465 0.6439
15 5% 4.01 4.14 4.01 4.14 4.14 4.01
p-value  0.8840 0.9467 0.8897 0.9521 0.9361 0.8837
10% 7.48 7.88 7.74 8.01 7.61 7.48
p-value  0.9053 0.8020 0.8267 0.6327 0.9059 0.9059
1% 1.34 1.34 1.34 1.47 1.34 1.20
p-value  0.9964 0.9961 0.9957 0.9899 0.9967 0.9902
20 5% 3.87 3.74 3.87 3.74 3.87 3.87
p-value  0.9354 0.9414 0.9368 0.9412 0.9358 0.9351
10% 7.61 7.74 7.74 7.74 7.61 7.34
p-value  0.3273 0.3136 0.2648 0.2452 0.3279 0.2836
1% 1.07 1.20 1.34 1.20 1.20 1.07
p-value  0.9959 0.9988 0.9972 0.9985 0.9989 0.9952
95 5% 4.27 4.41 4.14 4.27 4.27 4.14
p-value  0.6704 0.6125 0.6940 0.6678 0.6694 0.7031
10% 7.08 7.34 7.34 7.08 7.21 6.81
p-value  0.6365 0.5347 0.3536 0.6351 0.5319 0.7141
1% 1.07 1.07 1.07 1.07 1.07 0.93
p-value  0.9796 0.9768 0.9752 0.9844 0.9732 0.9966
20 5% 3.74 3.74 3.87 3.87 3.87 3.60
p-value 0.9449 0.9423 0.9347 0.9348 0.9348 0.8676
10% 6.68 6.54 6.41 6.54 6.54 6.54
p-value  0.8804 0.9154 0.8955 0.9172 0.9106 0.8993

Table 4.11: Results of the HIT test.

For each asset cardinality n and model we report the average number of VaR

violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (4.6) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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stage models. Therefore, unless the DCC models under consideration produce very different correlation
forecasts, it is not surprising that the tests based on portfolio returns do not let us discriminate clearly
between the different parameterizations of the correlation dynamics.

On the contrary, the tests behind the MCS based on the correlation of the GARCH standardized
returns in (4.3) do not depend directly on the univariate GARCH equations (though they depend on
them indirectly, through the degarching of the returns) and, as discussed above, favor clearly the most
parsimonious models (Almon, Almon shuffle, scalar, and rank one deficient).

In any case, a reasonable recommendation is that the choice of the optimal model is done a posteriori
since the grounds for this decision depend on the dataset, time period, and dimensionality of the
application of interest. It is clear that all these factors influence the performance of the DCC models
and that a careful empirical study has to be conducted in order to select one of them.

5 Conclusions

Several parameterizations for the DCC family of models are used, which go beyond the standard scalar
case that appears in most applications. An optimization technique based on Bregman divergences is
adapted to effectively perform the two-stage QML estimation of these models that handles all the linear
and non-linear parameter constraints that need to be imposed in order to ensure the stationarity of the
processes and the positive semidefiniteness of the resulting conditional covariance matrices.

The considered DCC parameterizations are the scalar, Hadamard, and rank deficient ones already
proposed in the literature and, additionally, new parameterizations called Almon DCC and Almon
shuffle DCC are introduced, which are particular cases of the rank one deficient model. The number
of parameters of the latter increases linearly with the dimension of the return process, whereas the
corresponding number in the Almon specifications is independent of that dimension. Even though this
property also applies to the scalar model, the Almon version is more flexible as it does not impose
that the same dynamic pattern applies to all the conditional correlations. All the mathematical and
algorithmic details needed to implement the proposed optimization method for each specification of the
DCC model are provided (see also the technical appendix). Computer codes will be made available to
the community.

An extensive empirical study is carried out using a dataset based on the thirty constituents of the
DJIA Index. The proposed estimation procedure is applied to the DCC models under study in various
dimensions up to thirty. Moreover, the empirical in- and out-of-sample performances of the different
types of parameterizations are compared using a variety of statistical specification tests. The results
provide substantial evidence that some non-scalar DCC parameterizations, in particular the Almon
(shuffle) and rank one deficient, are worth using in the modeling of the volatility of asset returns in
dimensions up to thirty, and perhaps more, though this remains an open issue.

Two extensions are on our research agenda. The first one consists in developing and applying the
method of composite quasi-maximum likelihood estimation to the non-scalar DCC models. [PESS14]
have found that this method reduces the bias in the estimation of the parameters of the scalar DCC
model, so it will be of interest to know whether this result applies also to non-scalar models. The
second extension consists in applying the proposed optimization tools to various non-scalar diagonal
VEC (DVEC) models and to compare the performance of DCC and DVEC models.

A possible further development is to apply the same tools to the ¢cDCC model of [Aiel3]. This
extension can be done by keeping the targeting estimator of the constant matrix S as we do for the
DCC process. Another, more difficult to implement approach both for DCC and c¢cDCC, will be to
estimate S together with the other parameters. An advantage of the cDCC choice is that a profiling
method is available in that case, as discussed in [Aiel3].
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A Notation and preliminaries

A.1 Vectors and matrices

Vector notation: a column vector is denoted by a bold lower case symbol like r and r' indicates
its transpose. Given a vector v € R™, we denote its entries by v;, with ¢ € {1,...,n}; we also write
v = (Vi)igq1,....n}- The symbols i,,0, € R™ stand for the vectors of length n consisting of ones and
of zeros, respectively. Additionally, given n € N, we define the vectors k! := (1,2,...,n)", k2 :=

(1, 22 ... ,712)—r e R™; eg) e R™, i € {1,...,n} denotes the canonical unit vector of length n determined
by e(l) = (5ij)je{1,...,n}~

Matrix notation: we denote by M,, ,,, the space of real n x m matrices with m,n € N. When n =m, we
use the symbols M,, and D,, to refer to the space of square and diagonal matrices of order n, respectively.
Given a matrix A € M, ,,,, we denote its components by A;; and we write A = (4;;), withi € {1,...,n},
j € {1,...m}. The symbol L, ,, denotes the subspace of lower triangular matrices, that is, matrices
that have zeros above the main diagonal:

Lpm={AeM,,, | A;j =0,7 > i} C M, .

We denote by ]Lj;m C Ly,m (respectively L, ,,, C L, ) the cone of matrices in Ly, ,, whose elements in
the main diagonal are all positive (respectively negative). We use S,, to denote the subspace S,, C M,
of symmetric matrices:

Sp={AeM, | AT = A},

and we use S} (respectively S;) to refer to the cone S} C S,, (respectively S; C S,,) of positive
(respectively negative) semidefinite matrices. We write A = 0 (respectively A < 0) when A € S}
(respectively A € S,;). The symbol [,, € D,, denotes the identity matrix and @,, C M, is the subspace
of orthogonal matrices, that is, O, := {4 € M, | AAT =1,}.

The Frobenius inner product is defined on the space M, ,, as:
(A,B) :=tr (AB") =tr (A"B), A,B €M, . (A1)

The symbol tr denotes the trace of the matrix. This inner product induces the Frobenius norm that we
denote as || A := (A, A)'/2. Given a linear operator A : M, ,, — M, ,, we denote by A* : M, , —
M,, ,, its adjoint operator with respect to (A.1) by the relation

(B,A(C))=(A"(B),C), forany BeM,,,, and C € M, ,.

The Hadamard product of matrices: given two matrices A, B € M, ,,,, we denote by A©®B € M,, ,,
their elementwise multiplication matrix or Hadamard product, that is:

(A © B)” = AijBij for all i € {]., ceey n}, J € {1, . ,m} . (A2)
The main properties of the Hadamard product that are used in the sequel are the following;:

(i) The Hadamard product of two vectors: given two arbitrary vectors u,w € R", the following
relation holds true
uow="Uw, (A.3)

where U € D, is defined by U;; := u;, for all ¢ € {1,...,n}, that is, U := diag(u), where the
operator diag is defined in the following subsection.
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(ii) The Hadamard product trace property: consider the matrices A, B,C € M, ,,. Then the
following relation holds (see for instance [HJ94, page 304])

(A®B)CT)ii=(A®C)BT); for all i€ {1,...,n}.
This leads to the equality
tr(AoB)CT)=tr (A®C)BT), (A.4)
which we refer to as the Hadamard product trace property.

(iii) Schur Product Theorem: let A, B € M, be positive semidefinite matrices. Then A ® B is also
positive semidefinite. See [BR97] for a proof.

A.2 Operators and their adjoints

We recall some standard matrix operators and introduce several new ones that we use in the following
sections.

The diag and Diag operators: we denote as Diag the operator Diag : M,, — I,, that sets equal to
zero all the components of a square matrix except for those that are on the main diagonal. The operator
diag : R® — D,, takes a given vector and constructs a diagonal matrix with its entries in the main
diagonal. We denote by diag™' : D,, —» R™ the inverse of the diag operator. The adjoint operator of
Diag (respectively diag) is denoted by Diag* : D,, — M, (respectively diag”* : D,, — R"™); it is easy
to see that Diag* is just the injection D,, < M, and that diag* = diag™".

The vec and mat operators: Given a matrix A € M, ,,, we denote by vec the operator that
transforms A into a vector of length nm by stacking all its columns, namely,

vec : My — R™™, vec (A) = (A11,. -, Anty ooy Ay oo Apm) |

The inverse of this operator is denoted as mat : R™™ — M, ,,.

The vech and math operators: we denote by vech the operator that stacks the elements on and
below the main diagonal of a symmetric matrix into a vector of length IV := %n (n+1), that is,

vech: S, — RN, vech (A) = (A11,..., Ap1, Asay .o, Ang, oo Apn) | LA E Sy,

and we denote the inverse of this operator by math : RN — S,,.
The adjoint map of vech (respectively math) is denoted by vech* : RN — S, (respectively math* :
S, — RY). In [CO14] it is shown that given A € S,, and v € RY, the following relations hold true:

1
vech™ (v) = 5 (math (v) + Diag (math (v))), (A.5)
1
math* (A) = 2 vech(A — B Diag (A)). (A.6)
The relation between the vech, math, vec, and Diag operators: given a matrix A € S,, and

N := %n (n+ 1), we denote ’Py L, € My 2 and by D,, € M2 y the elimination and the duplication
matrices, respectively (see [L05]). These matrices satisfy:

vech (A) = Lyvec (A), (A7)
vec (A) = Dypvech (A4). (A.8)
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Given A € M,,, we define the diagonalization matrix Pff € M, via the relation:
math (PJvech (A)) = Diag (A). (A.9)
A well-known property of the vec operator that is exploited in the following sections is

vec (ABC) = (C" ® A) vec(B). (A.10)

The mat, and vec, operators: let r < n € N, N* := nr — %r(r— 1) and define the operator

mat, : RV —s L, - that transforms a vector of length N* into the lower triangular n x r matrix
defined by,

v 0 ce 0
V2 UnJrl e 0
mat, (v) = | ' ’ ’ ., for any v e RV . (A.11)
U Ungr—1 °*° UN*—nir
Un V2n—1 T UN~*

We denote the inverse of this operator as vec, : L, , — RN". We note for future reference that the
elements in the main diagonal of (A.11) are given by

1
{viy,..-,v;.}  with ij:n(jfl)Jrij(?)—j), je{tl,...,rh (A.12)

The following proposition characterizes the adjoint maps of mat, and vec,, respectively. Its proof is
provided in Section A.3.

Proposition A.1 Given r <n € N and N* = nr — %r (r—1), let A€ L,, and v € RN arbitrary.
Let maty : Ly, — RY" and vecy : RNV — L, - be the adjoint maps of mat, and vec,, respectively.
Then, the following relations hold true:

maty (A) = vec, (4), (A.13)

r

vec) (v) = mat, (v). (A.14)
The Almon lag operator and its tangent map: using the Almon lag function [Alm65], we define
the Almon lag operator alm,, : R® — R", with n € N and v € R3, as
(alm,, (v)); := v1 + exp(voi 4+ v3i?), for i € {1,...,n}. (A.15)
The tangent map Tyalm,, : R? — R™ is determined by the equality
Tyalm, - 6v = K, - dv, with Ky := (i, | k} @ alm,(v) | k2 ® alm,,(v)) € M, 3,6v € R?,  (A.16)

where the symbol | denotes vertical concatenation of matrices (or vectors), the vectors i,, k., k% € R"
were introduced in Subsection A.1, and v € R? is obtained out of the vector v € R? by setting its first
component equal to zero, namely, v := (0, vg, 1)3)T

The adjoint Talm,, : R* — R? of the tangent map Tyalm,, is determined by the relation

Tralm,(u) = K -u, for any u € R™. (A.17)
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A.3 Proof of Proposition A.1

In order to prove the Proposition A.1, we introduce the auxiliary operator o.
The operator o: Let r <n € N, N* =nr — 2r (r — 1), and

2
S={@G4)lie{l,...,n},5e{l,...;r},i>j}.
Given a matrix A € L,,, and v = vec, (A) € RV the operator o : S — {1,..., N*} assigns to the
position of the entry (i,j), ¢ > j, of the matrix A the position of the corresponding element of v in the
vec, representation. We refer to the inverse of this operator as =1 : {1,...,N*} — S.

Proof of Proposition A.1: In order to prove (A.13), we use the following chain of equalities:

(A,mat, (v)) = tr(A"  mat, Z Z A;j(mat, Z Z A;j(mat,

=1 j=1 i=r j=1
r—1 r r %
+ZZA” (mat, ZZA” (mat, (v))i; —&—ZZA” (mat,
= 1] 1 i=r j=1 = 1] 1
+Z Z A;j(mat, (v))i; = ZZA” (mat, (v))i; +ZZA” (mat,
i=1 j=i+1 i=r j=1 =1 j=1
= ZZA”UU(”) + ZZAUUJ (i) = ZAU 1(q)Vq = (vec, (A), V).
i=r j=1 =1 j=1

Since A € L, and v € R in these equalities are arbitrary, the identity (A4, mat, (v)) = (vec, (4),v)
ensures that (mat; (4),v) = (vec, (4),v), which yields (A.13). In order to prove the relation (A.14)
we write down:

(v, vec, (A)) = tr (v vec, ( Z vi(vec, (A)); = Z Z Vo(ij) (Veer (A))q (i)
=3 (mat, (v))i;Ai; = tr((mat,(v)" - A) = (mat, (v), 4),

i=1 j=1

which yields (vec} (v), A) = (mat, (v), A) and hence proves (A.14).

B Proof of Proposition 2.1

We start by recalling the general fact that any positive definite matrix M € S has positive diagonal

entries, that is,
M;; >0, for any i € {1,...,n}. (B.1)

Indeed, given a canonical vector eg), i€ {l,...,n}, My; = (egl),Megf)), which is positive by the
assumption M € S;. Let now A, B € S,, be two parameter matrices that satisfy the constraints (2.10),
(2.11) and define C := (ini,, — A — B) ® S. Notice first that the condition (2.11) implies by (B.1) that

Cii = (]. — A“ — B“)S“ > 0, for any 1€ {1, A 771}. (B2)

Additionally, since the matrix S is approximated by the empirical covariance (2.9) then S € S} and
hence, again by (B.1), we can state that S;; > 0 almost surely, for all i € {1,...,n}. This automatically
yields that

A+ By < 1, (B.?))
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with A;;, B;; > 0,4 € {1,...,n}, by (2.10) and (B.1). We now easily prove that |A;; + B;;| < 1 for any
i,j €{1,...,n} as a corollary of (B.3) and the Cauchy-Bunyakovsky-Schwarz inequality. Indeed, since
A, B € S/, then the sum A+ B € S} and hence we can write the following relations for all pairs of

canonical vectors e} and eg), i,7€{L,...,n},

[Aij + Byl =le0T (A + Byeld)| = [e)T (A + B)'/2(A+ B)/2 )| = |(A+ B)/2 &), (4 -+ B)'/2 &)

<A+ B2 o) (A4 B2 ) (A + B2 o) (A + B2 o)

=/(Ai + Bi) (455 + Byy) < 1, (B.4)

where in the last inequality we used that A, B € S satisfy (B.3). The relations (B.3) and (B.4)
automatically yield (2.6), as required.

C Proof of Proposition 2.2

We start by showing that the map W is injective. Let A, B € L}, be such that [A] = [B]. This implies
the existence of an element O € O(r) such that AO~! = B or, equivalently, OAT = BT. This equality
can be written in terms of matrix entries as

ail G21 Q31 - Gpl b1 b1 b31 -+ by
0 axx az - ap ~ 0 by b3z -+ b2 ~
O 0 0 azz -+ ar3 A = 0 0 bz -+ b B , (C.1)
0 0 0 - ap 0 0 0 - by

with AV,E € M, ,_,. We now proceed recursively by analyzing the n different equations included
in (C.1). First of all, since A, B € L}, then aj1,b1; > 0 and hence the equation O (a11,0,- - ,0)T =

(b11,0,... ,())T implies that a;; = b11 and that O € O(r) belongs to the subgroup of Q(r) isomorphic
to O(r — 1) that leaves invariant the vectors in span{egl)}. This statement, together with the second
equation included in (C.1), that is, O (az1, a22,0,. .., O)T = (ba1, b22,0,. .., O)T imply that as; = bo; and
that O (0, as2,0, ..., 0)T = (0, b22,0, ..., O)T. Since ags, bos > 0 then ase = by necessarily and we can
conclude that O € O(r) belongs to the subgroup of O(r) isomorphic to O(r — 2) that leaves invariant
the vectors in span{eg-l), es-z)}. We are able to conclude by repeating this procedure r times that O =1,
necessarily and that A = B, as required.

In order to show that U is also surjective, we have to prove that for any [B] € M, ,./O(r), there
exists A € I}, such that W(A) = [B]. Let B € M, , be an arbitrary element in the orbit [B] such that

bir ba1 b3z - bey —
BT bia baa b3z - br2 B
blr b2'r‘ b37' e b’r"l'

with B € M, »—r. Let O; € O(r) be such that Oy (b11, b2, .. ., blr)T = (b}hO, - 7O)T, for some b}; > 0
and let
biy by by oo by |
S R > L Y
0 b%r bér e bl

Tr
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Consider now another element Oy € O(r) that leaves invariant the vectors in span{egl)} and such that
Oy (bby, bhy, ... b8,) T = (bb,,02,,0,...,0) ", for some b2, > 0, and let

biy by by o by
0 b%z b§2 b22 =~
5 2
0 0 by - 0y | B = 0,0,B".
0 0 b3, - b2
If we iterate 7 times this construction we obtain r elements Oy, O3, ..., O, € O(r) such that the matrix

A defined by AT := 0,0,_1---020,BT belongs to L/, and since by construction [A] = [B] we have
that U(A) = [A] = [B], and the result follows.

D Gradient of log-likelihood function

D.1 Direct derivations

Proposition D.1 Letr = {ry,...,rr} be a sample withry € R™, t € {1,...,T}. Let 6 := (61,02) €
PxP,0(0):=(A(01),B(02)) €S, xSy, and let logL (0;r) be the log-likelihood in (3.1)-(3.2). Then,

T T
VologL (6;1) = > Vol (0:1¢) = Y T;0-T&H, - Vil (0:1y) (D.1)
t=1 t=1
with 1
Vi e (0511) = =3 [H7 ' — H 'rer) H ' (D.2)

In the relation (D.1), the differential operator T§Hy = Sy, X S, — Sy, X S, is the adjoint of the map
TeH; : S, xS, — S, x S,,. For each component © (that is A(01) and B(02)) of ® and for any
A €S, T&H, is determined by the expression:

1 . *— *— *— *—
T5H, - A =T5Q, |Q; ' DyAD; :*l—iDlag( T2(DADQITIQ + QiQ T DAD)Q Y| . (D.3)

Additionally, the differential operator TgQ: @ Sy X S, — Sy X Sy, is the adjoint of the map TeQ: :
Sn xS, — Sy, X Sy; for each component A(01) and B (02) of ® and for any A € S, TEQ: is
determined by the recursions:

TiQi A=A (e-16) 4 — S) + TiQi—1 [A® B], (D.4)
TpQi - A=A0(Qi—1—8) +TpQi—1 [A G BJ, (D.5)

that are initialized by setting T;Qo = 0 and THEQo = 0.

Finally, the differential operator Tg® : S, x S,, — P x P is the adjoint of the map T9® : P x P —
Sn X Sy, with P x P the intrinsic @ parameter space and parameterization © (0) associated to each of
the model subfamilies considered in Section 2. For a given pair Ay, Ay € S,, these maps are determined
by the following expressions:

(i) The Hadamard DCC family: let n € N, N := %n (n+1). In this case, the intrinsic parameter
subspace P is RN, 0 := (a,b), and © (0) := (math (a),math (b)), for any a,b € RN. Moreover,

T;©: S,xS, — RN x RN

(A1, As) —>  (math® (A;), math® (As)). (D-6)
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(ii) The rank deficient DCC family with rank r: let r <n € N, N* :=nr — 1r (r — 1). In this
case the intrinsic parameter subspace P is RN, 0 := (a,b), and

©(0) := (mat,(a)(mat,(a)) ", mat,(b)(mat,(b))"), for any a,be RV .
Moreover,

T;©: S, xS, — RN x RN”

(A1,A2) — 2 (vec,(Ajmat,(a)), vec,(Asmat,(b))). (D7)

(iii) The Almon DCC family: in this case the intrinsic parameter subspace P is R® and © (0) :=
(alm,, (81) (alm,, (61)) T, alm,, (02) (alm,, (62)) ), with 61,0, € R3, 8 := (81, 03). Moreover,

To®: S, x8, — R3 x R3 (D.8)
(AhAg) — 2 (KglAlalmn(Gl),K&Agalmn(02)), '
where Ko, = (i, | k} ® alm,(6;) | k2 ® alm,,(0;)) € M, 3, 8; := (0, (6)a, (01')3)1—, i € {1,2}, the
symbol | denotes vertical concatenation, and kL, := (1,2,.. ) k2 = ( 22, ,n2)T € R™.

(iv) The scalar DCC family: the intrinsic parameter subspace is R and ©(0) := (aini,, bi,i)), with
a,b €R, 0 = (a,b). Moreover,

To®: S, xS, — R xR

(A1, Ag) — ((Anind]), (Ag,ini])). (D.9)

Remark D.2 Proposition D.1 can be easily extended to the non-targeted DCC model (2.5). In that
case we take into account the presence of the additional intrinsic parameter @ € RN, N := in(n+1),
and hence we define 8 := (01,02,03) € PxP xRN and © () := (A (0,),B (02),C (83)) €S, xS, xXS,.
The relations (D.1)-(D.2) remain valid, the maps corresponding to (D.3), (D.6)-(D.9) are obtained in
a straightforward way by extending both their domain and image spaces to account for the added
parameter 83 € RY applying the map (D.6). For the latter map the domain and image space have to be
reduced from a product to one multiplier beforehand. The recursions(D.4)-(D.5) in the non-targeted case
have to be extended in order to define a new differential operator T§Qy : Sy, X S, XS, — Sy, XSy, X Sy,
that is determined by the recursions:

TiQ:-A=A0® (et,lell) +T3Qi—1[A® B], (D.10)
TpQi - A=AOQ1 +T5Qi—1 [AG B, (D.11)
TeQ: - A=A+THQi-1 [A© BJ. (D.12)

These recursions are initialized by setting 73 Qo = 0, T5Qo = 0, and T5Qo = 0.

Proof of Proposition D.1 We first compute the differential of the log-likelihood function in (3.2).
Indeed, for any 60 € TyP x ToP:

doly - 86 = dy,1, (H, (©(9))) - Te H, (© (6)) - Ty® () - 50
= (Vi Iy, ToH; - To® - 860) = (T;© - T4 H, - Vi1, 80),

where we used the chain rule on the function ® = ©(8). This relation shows that

Vglt (0, I‘t) = T;@ . T(f.)Ht . thlt (07 I't) 5
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which yields (D.1). The proof of (D.2) is standard and can be found, for instance, in Apendix 7.6 of
[CO14]. In order to prove (D.3) we first consider the tangent map TeH; : S, X S, — S, x S,, and
derive the expression that determines it for every component © of ®. First,

ToH;- 60 = Dy(To(Q; ") 00)Q:Q; "Dy + DiQ;  (ToQ: - §0)Q; ' Dy
+D:Q; 7 Qu(To(QF 1) - 60)D;, O €S,.. (D.13)

Now, since
ToQ; 00 = 1 Qi Ding (ToQ: - 0),
the following relation holds true
To(Qi™) 60 = — Qi *Ding(ToQ: -50)Q; ™ (D.14)

When we substitute the expression (D.14) into the relation (D.13) we obtain an explicit expression for
the map TeH; : S, X S, — S, X S,, . We now compute its adjoint T§H; : S, x S, — S, x S,, by
dualizing (D.13) with respect to the Frobenius inner product. Indeed, let 00, A € S,, arbitrary, then:

(T&H; - A, 00) = (A ToH;-50) = (A, Di(Te(Q; ) - 60)Q:Q; ' Dy) + (A, D;Q; H(TeQ; - §0)Q; D)
A, DQ;'Q (To (Q; ") - 60) Dy) = (T4 (Q; ) (D:ADQ; ™' Q) ,60O)
HTEQ: (Q ' D:ADQ; ™) ,00) + (T5Q; " (Q:Q; "Dy ADy) ,60),
and hence
TSH: - A =T5Q: (Qf ' DiAD,Q; ™) + T (Q: 1) [D:AD:Q; ' Qi + QeQ; ' DyAD] . (D.15)

In order to explicitly write down the second summand of this relation, we dualize (D.14). For any
00, A € S,, we obtain:

(T5(Q; ™A, 80) = — (AT @ *Ding(ToQu - 00)Q; ™) = —3r(Q; AT Q; *Diag(To:  50))
= 2 Qi *AQ; !, Diag(ToQ: -40)) = — 5 (Diag(@] *AQ} "), Diag(Te@: - 16))
= L (T5QUDing(Q; *AQ ), 56),
which immediately yields
Te (Qi7 ') A= f%TthDiag (Q;2AQ; ). (D.16)

Substituting (D.16) into (D.15) we obtain:
* _ % —1 *—1 1 : *—2 *—1 *—1 *—1
ToH: - A =T5Q: |Q; DiADQy ™ — 2D1ag ( t (DtADtQt Qr + Q:Qy DtADt) t ) )

which proves (D.3) in the statement of the Proposition.
In order to prove the relations (D.4) and (D.5) we start by differentiating (2.8). For arbitrary
0A,0B € S,, we obtain:
TaQ:-6A=—0A®S+0A® (e1-16_1) + B® (TaQi—1 - 5A)
=0A® (e-18)_ 1 — S) + B® (TaQs—1 - 6A), (D.17)
TpQi-0B=—-0B®S+0B® Qi1+ B0 (TpQ—1-0B)
=0B©® (Q-1—5)+Bo (TsQi-1-6B). (D.18)
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We now compute the corresponding adjoints with respect to the Frobenius inner product. Indeed, for
any 0A, A € S,, we have

(ThQ¢-A6A) = tr[AT (JA® (e1-18/ 1 = 9))] +tr [AT (B (TuQi—1 - A))]
= tw[0AT (AG (er1e), — 5))] +tr [(TAQt_l AT (AG B)}
= (A (g1 4 —8),04) + (T5Q:—1 (A ® B) ,5A),
where we used the Hadamard product trace property (A.4). This expression yields
TiQi A=A (em16[ 1 — S) + TiQ:i—1 (A @ B)

which proves (D.4). We analogously show (D.5) by dualizing (D.18). Let 6B, A € S,, be arbitrary; the
following relation holds true:

(TEQ¢ - A 6B) = tr [AT (0B ® (Qi—1 — 9))] = tr{A ® (Q¢—1 — 5) ,0B) + (T3Q:—1 (A © B) ,6B),
which is equivalent to T5Q: - A = A O (Qi—1 — S) + TEQ—1 (A © B).
We conclude by proving the relations (D.6)-(D.9) that are obtained out of the dualization of the tangent

map Tp® of the relation © () that provides the connection between the variables ® and the intrinsic
parameter space 6 for each of the families considered in Section 2.

(i) The Hadamard family: let da,db € RY then the map Tp® : RY x RN — S, x S, is given by
Te® - (da, 6b) = (math (da) , math (6b)).
Dualizing this relation, we obtain for any A, Ay € Sp:
(Tg®(A1,As), (da, db)) = ((A1,Az), (math(da), math(db))) = ((math*(A;), math*(Az), (da, db))),

and hence
(Al, AQ) = (math* (Al), math*(Ag)),
which yields (D.6).
(ii) The rank deficient family: let da,db € RN, the tangent map Tp® : RV x RV — 'S, x S,
is given by
To® - (da, 6b) = (matr(éa)(matr(a))—r + mat,(a)(mat,(da)) ",
mat,.(6b)(mat, (b)) + mat, (b) (matr(éb))—r).
We now dualize this relation in order to prove (D.7). For Ay, Ay € S,, arbitrary we write
<T0* (AIaA2)7 (50"61))) = <<A15A2)7T9® ' (5&,6b)>
= ((A1,Ay), (mat,(6a)(mat,(a)) ", mat,(8b)(mat, (b)) "))
+((A1,Ap), (mat, (a) (mat, (§a)) ", mat, (b) (mat, (6b))")))
= 2((Ajmat, (a),Asmat, (b)), (mat, (da),mat, (6b)))
= 2((mat; (Ajmat, (a)),mat) (Asmat, (b)), (da, db))). (D.19)
Recall that by Proposition A.13 the operator mat} equals vec, and hence the relation (D.19) yields
O (A1, Ag) = 2(vec,.(Armat, (a)), vec,(Asmat, (b))),

and proves (D.7), as required.
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(iii) The Almon family: let da,db € R3, then the map Tp® : R? x R® — S, x S,, is determined by
To® - (3a, db) = ((Ka -8a)(alm, ()T + alm, (a) (Kq - 6a) ",

(K - 8b)(alm,, (b)) + alm,, (b) (K - 5b)T), (D.20)
where we used the expression (A.16) for the tangent map Tpalm,, : R> — R™. In order to prove
(D.8) we dualize the relation (D.20). For Ay, Ay € S,, arbitrary we compute

<T9* (Ala A2) ’ ((sa'a 6b)> = <(A17 A2 T9@ ) (60’5 6b)>
= ((A1,9),((Kq - 6a)(almy, ()", (K - §b)(almy, (b)) "))
(A1, Az), (almy, (@) (Kq - §a) ', almy, (b) (Kp - 6b) 7))

= 2{(Ajalm, (a),Asalm, (b)), (K, - da, Kp - 6b))
= 2((K, -A;-alm, (a), K, -As-alm, (b)), (da,db)),

which yields (D.8), as required.

(iv) The scalar family: let da,0b € R. The map Tp©® : R x R — S,, x S,, is given by

Te® - (da, 6b) = (5a1n ,0bi,i ) )

Hence, for Ay, Ay € S,, arbitrary we have

(Tg® (A1, Az), (8a,8b) Y = (A1, As) , Te® (da, b))
= ((A1,A9), (6a1n , Obi,, i )) (((A1,1ni Y Ay, ini )) (da, b)),

and consequently,

Tg@ (AlvAQ) = (<A1a1n > <A271n >) s
which proves (D.9), as required.

D.2 Matrix expressions of the recursions in Proposition D.1

In order to algorithmically implement Proposition D.1, the operator recursions (D.3)-(D.8) have to be
expressed in terms of matrix recursions that are provided in the following result.

Proposition D.3 Consider 8 := (61, 0>), ©(0) := (A(601), B(02)), and the differential operators T Hy,
T5Q¢ - Sy xS, — S, XSy, which for every component © of @ are defined by the relations (D.3)-(D.5).
Let AL, BL, VE : RN — RY with N := $n (n+ 1) be the linear maps, defined as

Af := vech o T4 Q; o math, (D.21)
BEQ := vech o T5Q: o math, (D.22)
VE = vech o T Hy o math, (D.23)

and let Ay, By, V; € Sy be the matrices associated to the operators (D.21), (D.22), and (D.23), re-
spectively. Then, the matrices {A:},cy 7y, {Bi}ieqr, . 1y, and {Vit,c(q 7y are determined by the
recursions

Ay = diag (vech (st,lsll - S)) + A;_1diag (vech (B)), (D.24)
By = diag(vech(Qi—1 — S)) + Bi-1diag (vech (B)), (D.25)

Vo= 0L (@) @ (Qi7' D) — 5P (Q Q@i D) © (37D

QD) @ (QI2QuQi T D) | - Dy with ©, = {Ay, By}, (D.26)
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and the initial values Ag = By = Vi = 0, where L,,, D,,, and P;f are the elimination, duplication, and
diagonalization matrices in dimension n, respectively, defined in (A.7)-(A.9).
Finally, consider the map Gg : RY x RY — P x P defined by

Go := Ty ® o math, (D.27)

where Tg® : S, x S, — P x P is the adjoint of the map Tp® : P x P — S, x S,, and P x P
the intrinsic @ parameter space that depends on the mapping © (0) associated to each of the model
specifications considered in Proposition D.1. Then:

(i) The Hadamard family:
Go : RY x RN — RN x RV

Go (v1,v2) =2 (V1 - %vech(Diag(math(vl))LvQ - évech(Diag(math(vQ)))> . (D.28)

(ii) The rank deficient family:
Go :RY xRY — RV x RN

Go (v1,v2) = 2 (vec,(math(vy)mat,(01)), vec, (math(vy)mat, (02))), (D.29)

with @ = (01,05) € RN" x RY" | and where r <n € N, N* := nr — %r(r— 1).
(iii) The Almon family:
Go : RN xRN — R® x R?
Go (v1,v2) = 2 (Kg math(vy)alm, (60;), Ky math(vs)alm, (85)), (D.30)
where 8 = (01,05) € R? x R3, and Ky, (for i = 1 and 2) has been defined in Proposition D.1.
(iv) The scalar family:

Go :RY xRY S RxR
Go (v1,v2) = ((math(v1),i,i, ), (math(vs),i,i,)) . (D.31)

Proposition D.3 provides a complete computational recipe for the calculation of the gradient of the
log-likelihood function associated to each of the DCC model parameterizations under study. We note
that this result could be easily extended to any other model prescription by simply writing down the
associated operator Gg : RV x RN — P x P in (D.27).

Remark D.4 Proposition D.3 can be extended to the non-targeted DCC model (2.5). In that case
0 :=(61,0:,03) and © (0) := (A(61),B(02),C (03)). The differential operators TgHy, TgQ = Sy, X
Sp XS, — S X Sy, X S, for every component © of @ are defined by the relations (D.3) and (D.10)-
(D.12). The maps Ab, Bh, VE : RN — RN, with N := {n (n + 1), are defined as in (D.21)-(D.23) and,
additionally, C5 : RN — RY is given by

CG = vech o T$,Q; o math. (D.32)
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The matrices A¢, By, Cy, V; € Sy associated to the operators (D.21), (D.22), (D.32), and (D.23), respec-
tively, are determined by the recursions:

Ay = diag (vech (e;_1€,_,)) + A;—1diag (vech (B)), (D.33)
B, = diag(vech(Q:—1))+ B;—1diag(vech (B)), (D.34)
C; = In+ Ci_1diag (vech (B)), (D.35)
Ve = 0L (@i D) @ (@iD) - 3 PAL(Q Q) D) @ (72D
+HQ;T'Dy) ® (Qr*QtQ;‘*lDt))} - D, with ©, = {A;, By, C4}, (D.36)

using the initial values Ag = By = Cy = Vo = 0; L,,, D,,, and P? are the elimination, duplication, and
diagonalization matrices in dimension n, respectively, defined in (A.7)-(A.9). The generalizations of the
maps (D.27)-(D.31) to the non-targeted case are obtained in a straightforward way by extending both

the domain and image spaces in order to account for 83 € RN, N := %n (n+1). For that these both

corresponding to 03 domain and image subspaces are taken from the definition (D.28) having reduced
it first to a one-component map.

Proof of Proposition D.3

We start by proving (D.24). Let A := math (v), with v € RY arbitrary. Then by (D.4), recalling
that the operator math is the inverse of the operator vech, and using the expression (A.3) for the
Hadamard product of two vectors, we obtain

Ay - v = vech (math (v) ® (e4—16/_1 — §)) + vech T3Q;—1 math vech (math (v) ® B)
= vech (math (v) ® (Et_lé?tT_l —8)) + Ay_1 vech (math (v) ® B)
=v @vech (g,18,_; — 5) + A1 (v @ vech (B))
= diag (vech (g;_16,_; — 5)) - v + A;_1diag (vech (B)) - v,
which yields (D.24) as required. Analogously, by (D.5):

By - v = vech (math (v) ® (Qt—1 — S)) + vech T5Q:—1 math vech (math (v) ® B)
=vOvech(Qi—1 — ) + Bi—1 (v ©vech (B)) = diag (vech (Q:—1 — 5)) - v + A;_1diag (vech (B)) - v,

and hence (D.25) follows.
We now prove (D.26) out of (D.3) and apply the relations (A.7)-(A.10) between the vech, math, vec,
and Diag:

Vi-v = vech T5Q; math vech (Q; ' D; math (v) D;Q; ")

1
— 5 vech T5Q; math vech Diag(Q}?D; math (v) D;Q; ' Q:Q; ™' 4+ Q; 2Q:Q; ' Dymath (v) D;Q; ™)

1
= 0O.;L,vec (Q:_lDt math (v) DtQt_l) - i@thVGC Diag(Q;* Dy math (v) D:Q; ™' Q:Q; ™
+Q;72QuQ; T Dimath (v) DiQ; ™) = O Ly (@71 D1) @ (Q37'Dy)) Dy - v
1
_i@thvec math PAL,vee(Q: 2D, math (v) D,QF1QuQ ! + QF2Q:QF ! Dymath (v) D,QF 1)

= OuL, ((Q7'D1) ® (Q77'D1)) D v = %@tPsLn((Q:‘thQrﬂDt) ® (Qi2Dy)
+(Qi D) @ (QF 2QuQ*Dy))Dy - v,

with ©; = {A;, B}, which proves (D.26) as required. Finally, the relations (D.28)-(D.31) are obtained
from (D.6)-(D.9) by straightforward substitution.
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E Implementation of the constrained optimization method in
the estimation of DCC models
The local optimization problem in (3.7), i.e. 8% = arg ming.pp f*)(6), is solved by finding the

value 6 for which Vg f(*) (6p) = 0. The general expression of the gradient Vo f*) (0) of the local model
is given by

Ve/® (0) = Vof(0W)+H® (@O -0W)+ LiVeDa,(6,6™)
j=1
S2 ‘ q; ] S3 ) m; )
+> L3 " VeDy (0,6%) +> L1 " VeDj (6,6%). (E.1)
j=1 i=1 j=1 i=1

The gradients of the divergences in (E.1) are given by

VoD, (0,0%) = —T; M;(M;(0)~" — M;(0™)~1), (E.2)
i *)y = — ! PN, ey, i N :

VHDN_].(oaB ) (N](B))Z (Nj(H(k)))Z (TGNJ qj)a € {]-a 7%}7 (E 3)
; #) = - DT ), ie{l,...,my :

V0DLj (070 ) (LJ(O)% (L](e(k)))z (CO mj)v € {17 ) J}7 (E 4)

where 6 € P is a generic component of the intrinsic parameter 8 € P x P, C’éj) €My, s,j€{l,...,s3}
i € {1,...,m;} are the canonical unit vectors introduced inJ Subsection A.1. Additionally, for every
Je{l,...,s1}, TgM; : Sg — P x P is the adjoint of the tangent map ToM; : P x P — Sy of M;(6) :
P x P — S, that determines the j-th positive semidefinite constraint. The symbol Ty M; : S, — P
in the relation (E.2) denotes the adjoint of the partial derivative TpM; : P — S, for some component
6 of 8. Analogously, for every j € {1,...,s2}, the map TgN; : R% x R% — P x P is the adjoint of the
tangent map TgN; : P x P — R% x R% of the function N;(0) : P x P — R% that determines the
Jj-th nonlinear constraint. Again T, IN; denotes the adjoint of the corresponding 6 partial derivative.
In order to numerically obtain the solution 8y of Vg f*) (8y) = 0 using the Newton-Raphson algo-
rithm, we need the Jacobian of the gradient of the local model and in particular the tangent maps of all

the gradients of the divergences in (E.2)-(E.4). Straightforward computations yield for every component
0 € P of 8 and any 6 € P:

is the matrix associated to the j-th linear constraint, and eg) eR%,ie{l,...,q;} and e%)j e R™i,

Ty(VoDar, (6,6™)) - 60 = Ty M,;(M;(0)~"(TyM; - 56)M;(6) "))
— (Ty(Ty M;)) (M;(0) ™" — M;(0™)~") - 66, je{l,....5},
ey |t 1
P (@) (v 6M)),
ie{l,...,q;}, 7€{1,...,s2},

Ty(VoDy,(0,6%)) - 60 = Ty(Ty N, - &) - 56,

) C(j)%%‘i ) ] ’ .
Ty(VeDy,(0,0%))-60 = W(cgm-e;g), ie{l,...,m;}, jE{1,... s3}.
J 7

Using these identities it is easy to determine the Jacobian of the gradient of the local model f*) (0).
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Indeed, the expression for the block of the Jacobian that corresponds to the component 6 € P is:

T,(Vof®(9)-00 = H®. MZLJ[T@M(M (6)™*(TyM; - 60) M;(8) ™))

(LT M) (M 8) ! — My (0% 69}+ZLJZ[W(TM«3&?)

1 _ 1
(N;(0))i (N (6%)));

Ty(T; N, - el 59]+ZLJZ ())2 9T e). (E5)

1=

In the following subsections we provide explicit expressions for the Bregman divergences, the local
penalized model, its gradient and associated Jacobian, for the different specifications of the DCC model
that are presented in Section 2. The detailed derivations of these results are contained in Section F.

E.1 Implementation for the Hadamard DCC model

Remember that in this particular case, the matrices A, B € §,, are parametrized with two vectors
a,b € RN, N = in(n+1), by setting A := math (a), B := math (b). Let 6 := (a,b) € RY x RY;
the intrinsic parameter subspace P is in this case RN and has dimension P = N. The dynamics of the
conditional correlation matrix for the Hadamard DCC model is given by (2.12) and @ is subjected to
positivity constraints (2.13)-(2.14).

Constraints and the local model The positivity constraints that need to be imposed on the
Hadamard model specification can be formulated using the classification introduced in Subsection 3.2.2
as the following set of positive semidefiniteness/definiteness conditions:

My(a) := math(a) = 0, (E.6)
(b) = ( ) =0, (E.7)
3(0) (1n i, —math(a) — math(b)) ® S > 0, (E.8)

where M (a), Ma(b), M3 (0) € S,,. The local model corresponding to (3.7) is given in this case by

3
74 (8) =1(6™) + Vo (0%)(8 ~ 0%) + (6 6T HM (6~ 6%) + 3" 1Dy, (0,67, (B)

j=1

where L; := (L%, L3, Lif)T is the vector that contains the penalization strengths, f(O(k)) is minus the
log-likelihood function (3.1), Vg f(8¥)) is its gradient, that is Ve f(0™)) = —VglogL(0™; 1), which for
the Hadamard model is determined by relations (D.1)-(D.6) in Proposition D.1, and H®) is its Hessian
computed at the point 0%, 1In relation (E.9), the Bregman divergences associated to each of the
constraints (E.6)-(E.8) are easily obtained from (3.5), which yields the following expressions:

Das, (a,a®) = tr(M;(a) - My (a®) 1) —log det(M(a) - My (a™)™1) —n, (E.10)
Dy, (b, b)) = tr(My(b) - Ma(b™) ™) — log det(Ma(b) - My (b)) — (E.11)
Dar, (8,0%)) = tr(Ms(a, b) - M3(a®,6*))~1) — log det(Ms(a, b) - Mg(a(k) b — . (B12)
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Gradient of the local model A lengthy but straightforward computation contained in the technical
appendix F.1 yields the following expressions for the components of the gradient of the local model:

Vaf®™ (0) =Vaf(0®) + H® (a — a™) — L} math*(math(a)~! — math(a®)~1)

+ L3 math* (27 = (%)) 0 5) | (E.13)
Vo /) () =V f(6%)) + HF (b — ™) — L? math* (math(b) ™" — math(b*))~1)

+ L3 math” (271 = (20) ) 0 5) (E.14)

where we used the conventions Z := (i,i,, — math(a) — math(b)) ® S and Z®) = (i,i] — math(a®) —

math(b®)) ® S. In these relations, V4 f(0™)) and V, f(6%)) denote the components of the gradient of
minus the log-likelihood function computed at the point o

Jacobian of the gradient of the local model We use the general relation (I£.5) to determine the
tangent map of Vg f(¥) () for any 60 := (da,db) € RN x RV:

TV f*) (60) =HY6a + L] math* (math(a) ™' math(da) math(a)~?)

+ L3 math*((Z *(math(da + db) © S)Z~1) © S), (E.15)
TyVp* (66) =H"6b + L? math* (math(b) " math(8b) math(b) ")
+ L3 math*((Z ! (math(da + db) © S)Z7 1) © S). (E.16)

The (1,1) and (1,2) blocks of the Jacobian matrix can be obtained from (E.15) by taking increments
80 of the form (da,0) and (0, db), respectively. Analogously, the (2,1) and (2, 2) blocks of the Jacobian
matrix follow from (E.16) by using increments 80 of the form (da,0) and (0, db), respectively.

Remark E.1 The non-targeted Hadamard DCC model contains an additional parameter matrix C' €
Sy, that is intrinsically parametrized with the vector ¢ € RN, N = In(n+ 1), by setting C' := math (c);
the intrinsic parameters of the model are hence given by 8 := (a,b,c) € RY x RY x RN, The con-
straints of the model are listed in (2.6)-(2.7) and comprise three positive semidefiniteness/definiteness
and two linear positivity conditions. More specifically, the conditions M;(a) and Ms(a) necessary for
the targeted Hadamard DCC model remain valid and, in addition, the three following constraints are
imposed:

My(c) := math(c) = 0 €S, (E.17)
Lj(a,b) =iy —CPa—CIb>0y eRY, j=1,2, (E.18)

where C't(zj) = C’éj) = (1), j = 1,2 with Iy the identity matrix. The local model corresponding
to (3.7) is given in this case by (E.9) where the term that is associated to the constraint Ms(a) is
replaced by L3Dy, (0,0™)), and where we add the term 2521 Léi;DLj (8,0 corresponding to (E.17)
and (E.18); L} and Ly := (L3, L%)T denote the penalization strengths. The log-likelihood function, its
gradient, and the Jacobian of the gradient of the local model are obtained directly from (E.13)-(E.16)
by taking into account the Remarks D.2 and D.4. The Bregman divergences associated to each of the
constraints (E.6),(E.7), (E.8),(E.18) are obtained from (3.5) and (3.6):

Doy, (e, ™) = tr(My(c) - My(c®) 1) —log det(My(c) - My(c™)™1) —n, (E.19)
1+ (—1)j(ai + bl) + (—1)j(ai + bl)

1
. — log -1, (E.20)
1+ (—1)7 (@ + b)) 1+ (1) (@l + b))

Dj (0,6W) =
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with i € {1,..., N}, j = 1,2. In each component of the gradient of the local model Vaf®) (0) and
Ve f*) (@) in (E.13) and (E.14), respectively, the last summand has to be replaced by:

= 1 1 al 1
ng 1_ai_bi_1_agk)_b§k)] el — L z; 1+az+b 1+a§k)+b§k) ey, (E.21)
with eg\i,) eRVN je {1,..., N} the canonical unit vectors introduced in Subsection A.1. Additionally,
the third component of the gradient of the local model is given by
Vef® (0) = Vef(0W) + HP (¢ — ™) — L? math* (math(e) ™" — math(c®)~1). (E.22)

Concerning the Jacobian of the gradient of the local model 0 := (da, b, dc), we use (E.15)-(E.16)
where, again, the last summands are replaced by:

N N
Ly — L2 E.2
2;(17%71)1) Nt Z 1+a1+b) eN (E-23)
and, additionally,
TV f*) (60) =HF ¢ + LT math* (math(c) ™ math(dc) math(c) ). (E.24)

The relevant blocks of the Jacobian matrix are obtained from (E.15), (E.16) with (E.23) and from
(E.24) by taking the corresponding increments 0. For example, the elements (1, 1), (1,2), and (1, 3) of
the Jacobian require taking increments of the form (da,0,0), (0,b,0), and (0,0, dc), respectively.

E.2 The rank deficient DCC model

As explained in Section 2.3, in this case the parameter matrices A, B € S,, have a common prescribed
rank r € {1,...,n — 1}, that is, rank(A) = rank(B) = r. The intrinsic parameterization is provided
1

by two vectors a,b € RN", N* = nr — 57(r — 1), using the operator mat,. : RN — L, ., presented

in Subsection A.2 and setting: A := mat, (a)mat, (@), B := mat, (b)mat, (b)'. Let 6 := (a,b) €
RN x RN"; the intrinsic parameter subspace P is RV . The dynamics of the conditional correlation
matrix process {Q;} for the rank deficient family is given in (2.18) and 0 is subjected to the identification
and positivity constraints (2.19)-(2.20).

Constraints and the local model We group these constraints according to the classification in
Subsection 3.2.2 which yields two linear and one positive definiteness constraint. In order to specify
them let {i1,...,4,} withi; =n(j—1)+ %j(3—j), j €{1,...,r}, be the entries spelled out in (A.12) of
any vector in RY" that amount to the main diagonal of the corresponding matrix in L, , via the mat,

representation. Let C’él), 0152) € M, n+ be the matrices that have as rows the canonical unit vectors

{e(l1 . eg\lf’* } with a minus sign in the front. Then:
Ly (a) := —CWa > 0,, (E.25)
Ly(b) :=—CPb>0,, (E.26)

M (6) := (ini, — mat, (a)mat, (@) — mat, (b)mat, (b)')® S - 0, (E.27)
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where Lq(a), L2(b) € R", and M (0) € S,,. The local penalized model for the optimization problem (3.7)
in this case is given by

~ 1
F® (0) =f(0") + Vo (6)(0 ~0) + 2 (0~ 6“)TH® (6 - 0"
2
+3 "% Dy (0,0%)) + LoDy (6,0%), E.28
1*r j

j=1

where L := (L%, L%) T, L5 specify the penalization strengths, f(O(k)) is minus the log-likelihood function
evaluated at (3.1), Vo f (™)) is its gradient, that is Ve f(8™)) = —VglogL(6¥) which is determined by
relations (D.1)-(D.5), and (D.7) in Proposition D.1. Finally, H*) is its Hessian computed at the point
6™ . In relation (E.28) the Bregman divergences associated to each of the constraints (E.25)-(E.27) are
easily obtained from (3.5)-(3.6):

Dj (6,6M) = 2 _1ogZh 1 i —n(i—1)+5iB—j), je{l...,r} (E.29)
' ag,) az(-rl_c) 2
D’ (Ge(k)):b”—lo&—l = nG =1+ i3 —g), je{l,....r} (E.30)
L2 b b(k) gb(k) b J ‘7 2.] .7 b j AR b M
Dy (6,00 = tr(M(6) - M(8F)~) — log det(M(0) - M(8¥)~1) —n. (E.31)

Gradient of the local model A straightforward computation provided in Technical Appendix F.2
provides the following expressions for the components of the gradient of the local model (E.28):

T

- 1 1 i
(k _ (k) kY (k)Y _ 7l I I (7))
Vaf® (0) =Vaf(0W) + HP (a - a®) - L} Z o
Jj= J ij
+ 2Lyvec, ((M(8)~" — M(0¥)~1) ® S)mat,(a)), (E.32)
N "1 1 i
Vo /M) (8) =Vo(0W) + P (b bM) - L2 2:1 b b(k)] e
J= / 2
+ 2Lyvec, ((M(8) ™' — M(0™)~1) ® S)mat, (b)), (E.33)

where i; = n(j — 1)+ 2j(3—4), j € {1,....r}, Vaf (%) and Vi f(8®) are the components of the

gradient of minus the log-likelihood function computed at the point G(k); eg\i,)* eRN,iec{l,...,N*}
are the canonical unit vectors.

Jacobian of the gradient of the local model We use the general relation (I£.5) to determine the
tangent map to Vg f(¥)(0) for any 86 := (da,db) € RN x RN":

T

ToVaf™ (8a,6b) =H{da + L1 ‘:‘;f‘ e\ 4 2Lyvee, (M(0)™ (W © S)M(6)™) ® S)mat, (a)
j=1 "4
+ ((M(0)"' = M(OP)™1) © S)mat,(da)), (E.34)

. Tobi
ToVof " (3a,0b) =HPob+ 13 - el) 4+ 2Lyvee, (M(0) "1 (W © S)M(6)~") ® S)mat,(b)

j=1 "%j

+ ((M(0)"' — M(O™)~) © S)mat,.(6b)), (E.35)
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with i; = n(j — 1) + 33 —4), j € {1,...,r}, W := mat,(da)mat,(a)” + mat,(a)mat,(6a)’ +
mat,.(6b)mat,(b) " + mat,(b)mat,(6b) .

The (1,1) and (1, 2) blocks of the Jacobian matrix can be obtained from (E.34) by taking §0 of the
form (da,0), (0,b). Analogously, the (2,1) and (2, 2) blocks of the Jacobian are prescribed by (E.35)
by setting 40 as (da,0), (0, db), respectively.

Remark E.2 The intrinsic parameters 6 = (a,b,c) € RN x RNV x RN, N := In(n+ 1) of the
non-targeted rank deficient DCC models are subjected to the identification, positivity, and stationarity
constraints in (2.21), (2.22), and (2.23), respectively. According to the classification in Subsection 3.2.2
they amount to three linear and two non-linear constraints. The first two linear constraints are provided
in (E.25) and (E.26). In order to specify the others, we use the same notation introduced earlier:

M (e) := math(e) > 0, (E.36)
Nj (8) := iy — vech(mat, (a)mat, (a)" + mat, (b) mat, (b)) > Oy, (E.37)
N3 (6) := iy + vech(mat, (a) mat, (a)' + mat, (b) mat, (b)) > Oy, (E.38)
where M (c) € S,, and N;(0), N2(8) € RY. The local penalized model for the optimization problem (3.7)

in this case is obtained from (E.28) by replacing the last summand associated to the constraint (E.27)
by LDa, (8,0%) + Y2, L3i} Dy, (6,6™), with Ly and the vector Ly := (L}, L3) " the penalization
strengths. The log-likelihood function, its gradient, and the Jacobian of the gradient of the local model
are obtained directly from (D.1)-(D.5), and (D.7) in Proposition D.1 taking into account Remarks D.2
and D.4. In relation (E.28) the Bregman divergences associated to the additional constraints (E.36)-
(E.38) are easily obtained from (3.5) and (3.6), respectively:

Dy, (e, ™) = tr(M;(c) - My (™) ™Y) —log det(M;(c) - My(c™)™1) —n, (E.39)

), ey, ot M =L (540

The last summand in the expression (E.32) of the component Vg, & () of the gradient of the local
model has to be replaced by:

2% L} ! - L — L2 ! - L - vec (vech*(e(i))-mat (a))
S\ L) (o™ ] T [ (Va(0))i (vy(8™)), | ' N s

analogously, in the expression (E.33) of Vi f*) (8) by

N ) 1 1 ) 1 1 .
2; <L3 (N(0); (v, (6™))), | ~ L3 | ey, 60, | ) - vecy (vech”(ey) - mat, (b)),

and, finally, the component V. f*) (0) is written as
Vef® (0) = Vo f(0") + HF (¢ — ¢™)) — Ly math*(math(c) ™" — math(c®)~1). (E.41)

Concerning the Jacobian of the gradient of the local model, we consider 68 := (8a,db,dc) € RY" x

RN" x RN and use (E.34)-(E.35) where, again, the last summands are replaced by:
2 i L ! — ! — L2 ! — ! - vec (vech*(e(i)) - mat,(da))
S\ @) @) ] [0 (v0P)), ' A
+ (vech(W)); - Ly + L - vec (vech*(e(i)) - mat,(a)) (E.42)
C\(Vi(0)F T (V2(0))7 ' N ’
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and by
2§: L} ! - 1 — L2 ! - 1 - vec,(vech™ (e ()) mat,.(6b))
=1 TLNO) (Vi (6™)) TL:0)i (Ny(0M)), ' N
vec ; L L3 - vec, (vech* (e?) - ma
+ (vech(1)); - (W,,)) - T ) (vech” (elY) w(b))}, (.43)

respectively. In these expressions W := mat,(da)mat,(a) " +mat,(a)mat,(da)’ +mat,(5b)mat,.(b) " +
mat,.(b)mat,.(8b) . Additionally we have

ToVef™® (60) = HMdc + Ly math* (math(c) ' math(dc) math(c)™"). (E.44)

The relevant blocks of the Jacobian matrix are obtained from (E.34) and (E.35) by taking into account
(E.42) and (E.43), respectively, and from (E.44) by taking the corresponding increments §0. For
example, the elements (1,1), (1,2), and (1,3) of the Jacobian are obtained by taking increments of the
form (da,0,0), (0,db,0), and (0,0, §c), respectively.

E.3 The Almon DCC model

The Almon DCC model introduced in Section 2.4 can be seen as a particular case of the rank deficient
DCC model with parameter matrices A, B € S,, in (2.8) of rank » = 1. The matrices are intrinsically
parametrized by two vectors a, b € R? via the Almon lag operator alm,, : R®> — R" (see Subsection A.2
for the definition and properties of this operator) by defining A := alm,(a) alm,(a)” and B :=
alm,, (b) alm,,(b)". Let @ := (a,b) € R® x R3; in this case the intrinsic parameter subspace P is
R? of dimension P = 3. The DCC model in the Almon specification is spelled out in detail in (2.24).
The parameter constraints that are imposed in order to ensure that the process admits a stationary
solution and that the resulting conditional correlation and hence the conditional covariance matrices
are positive definite, are given by the relations (2.25)-(2.26).

Constraints and the local model We group the parameter constraints following the classification
introduced in Subsection 3.2.2. This leads to the following set of two nonlinear positivity and one
positive definiteness constraint:

N (a) := (alm, (a)); = eMT - alm,, (a) > 0, (E.45)
Ny (b) := (alm,, (b)); = eMT - alm,, (b) > 0, (E.46)
M (8) := (ini] — alm, (a)alm, (a)' — alm, (b)alm, (b)) ® S = 0, (E.47)

where Ni(a), N2(b) € R, M(0) € S,,, and e'!) € R" is the canonical unit vector. In the case of the
Almon family of models, the local penalized model for the optimization problem (3.7) with the Bregman
divergences associated to the constraints (E.45)-(E.47) is given by

7 (0) =1(09) + Vs (6))(0 — 0%) + 50— 0T M0 — 0¥

ZLJ i), D, (0,0%) + LoDy (0,6%), (E.48)

where Ly := (L%,L%)T and Ly specify the penalization strengths and m; = dim{DNj (B,O(k))}, j e
{1,2}. In this relation f(8*)) is minus the log-likelihood function evaluated at (3.1), Vg f(8%)) is its
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gradient, that is Vg f(8")) = —VlogL(8*)), which is determined by relations (D.1)-(D.5), and (D.8) in
Proposition D.1; H®*) is the Hessian of the minus log-likelihood computed at the point o), D, (8, O(k)),

j = {1,2} and Dy(0,0™) are the Bregman divergences associated to the constraints (E.45)-(E.46)
and (E.47), respectively. By (3.6) and (3.5), the expressions of these divergences are

Dy (6,90 = @mna (@) ) (@l (@) E.49
m( ) (alm,, (a)(k))l & (alm,, (a)(k))l ( )
wy_ (@ma ()~ (almy, (b))
Dn,(6,0%) i (), 1g(almn o), 1, (E.50)
Dy (6,0%)) = tr(M(a,b) - M(a™,b")~1) —log det(M(a, b) - M(a™ b*)~1) —n. (E.51)

Gradient of the local model A computation that is explicitly provided in Technical Appendix F.3
provides the following expressions for the components of the gradient of the local model (E.48):

ih) () — 0 4+ H® (g — a®)) — ! P 1 T el)
Vaf (0) vaf(e ) + Ha ( ) Ll [(ahn" (a))l (almn (a)(k))1‘| (Ka n )
+ 2L K] (M(0) ™' — M(O") 1) © 8) - almy, (a), (E.52)

Vof® (0) =V (") + 1,7 (b~ b)) — 17

v 1 T o)
(alm,, (b)) (alm, (b)““))l] (K" " )
+2Lo Ky (M(0)™" = M(6™) ™) © 5) - alm,, (b), (E.53)

where Vg f (G(k)) and Vy f (H(k)) are the components of the gradient of minus the log-likelihood function
computed at the point 0®). Recall that Kq, Kp € M, 3 are the matrices introduced in (A.16).

Jacobian of the gradient of the local model We use the expression (E.5) to determine the tangent
map to Ve f(¥)(0) for any 60 := (da, db) € R? x R3. Computations detailed in Technical Appendix F.3
provide the following results:

ToVaof*) (3a,db) =

Ko ba)i v )y 1 1 ST e
(almn(a))% (Ka, e, ) (almn(a))l (almn(a(k)))l ((Kaa 1 ) e, )}
+ 2L2{(Kaa 28a) - ((M(O) — M(g(k))—l) © 5) - alm, (a)

+ Ko (M(0){(W @ $)M(6)™") 0 8) - alm,(a) + K - (M(8)" —~ M©OP) ) © 9) - (K, - 5a)}
(E.54)

HFsa + L}{

ToVef® (6a,db) =

Ky 0b)1 o )y I 1
(alm,, (b))? SO l(almn(b))l (alm,, (b)),
+ 2Ly {(Kpp - 6b) " - (M(0)™" = M(0™)™") @ S) - alm,, (b)

+ Ky - (M(0)"' (W S)M(0)™") © S) - alm, (b) + Ky - (M(8)"' — M(6™)™") © ) - (Kp - 5b) }
(E.55)

Hék)6b+Lf{ ] ((Kop - 6b) 'egzl))}
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with

W = (K, - 6a) - alm,(a)” + alm, (a) - (Kq - 6a)" + (Kp - 6b) - alm,, (b) | + alm,, (b) - (K - 6b) T,
Kaa - 0a:= (0, | kL © (K2 -6a) | K2 © (K2 - da)),

Kpp - 0b:= (0, | k! © (KJ - 8b) | k2 © (K} - 8b)),

K3 = (0, |k, ®alm,(a) | k2 © alm,(a)),

Ky = (0, | k), ® alm, (b) | k2 © alm, (b)) .

Despite their apparent complexity, the expressions in (E.54)-(E.55) are explicit and allow the com-
putation of the blocks of the Jacobian matrix. The (1,1) and (1, 2) blocks of the Jacobian matrix can be
obtained from (E.54) by taking increments 66 of the form (da,0), (0,db). Analogously, the (2,1) and
(2, 2) blocks of the Jacobian are obtained out of (E.55) by setting 66 as (da,0), (0, §b), respectively.

Remark E.3 The intrinsic parameters 6 := (a,b,c) € R? x R? x RV, N := %n(n + 1) of the non-
targeted version of the Almon DCC model are subjected to the identification, positivity, and stationarity
constraints (2.27), (2.28), and (2.29), respectively. According to the classification in Subsection 3.2.2
they amount to four nonlinear constraints and one positive semidefiniteness constraint. Two of the four
nonlinear constraints are provided in (E.45) and (E.46), and the other conditions are given by:

N3 (6) := iy — vech(alm, (a)alm, (a)' + alm,, (b) alm,, (b)) > Oy, (E.56)
Ny (0) := iy + vech(alm, (a)alm, (a)' + alm,, (b) alm,, (b)) > Oy, (E.57)
M; (e) := math(c) > 0, (E.58)

where N3(0), N,(0) € RY, and M, (c) € S".

The local penalized model for the optimization problem (3.7) in this case is obtained from (E.48) by
replacing the last summand associated to the constraint (E.47) by Z;L g LA ,Dn;, (0, 0"+ LoDy, (6,00,
with the penalization strengths Ly and L3, L the additional components of the vector Ly in (E.48). The
log-likelihood function, its gradient, and the Jacobian of the gradient of the local model are obtained
directly from (D.1)-(D.5), and (D.8) in Proposition D.1 by taking into account Remarks D.2 and D.4.

In relation (E.48), the Bregman divergences associated to the additional constraints (E.56)-(E.57) are
easily obtained from (3.6), and (E.58) from (3.5) in the following way:

0,0 N; 0))i _, (Ni(6 >) —1, ie{l,...,N}, je{3,4). E.59
v, ( ) = V,(07))), g(N( 55y €{ b, ed{3,4} (E.59)
Das, (¢,e®) = tr(M; () - My (™)) —log det(M; (c) - My (c¥)~1) —n. (E.60)

The last summand in the expression (E.52) of the component Vg f*) (8) of the gradient of the local
model has to be replaced by

2% L} I :
S\ (N3(0))i (Ny(0™®)),

the same last summand in (E.53) becomes

N
2y (L?
i=1

;<k>>>}] ) (Kaq - vech®(e}y) - alm,(a)),
(E.61)

—h [(N4(9))i (N

1

1 _ 1
0))i  (N3(0M));

A A ITATICI

D(Kb vech*(e(?) - alm,, (b)),
(E.62)
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and additionally we have:

Vef®(0) = Vo f (00) + HF) (¢ — ™) — Ly math* (math(e) ™ — math(e®™)~1), (E.63)
where Kg, Kp € M, 3 are the matrices introduced in (A.16) and es\i,), i € {1,..., N}, are the canonical

unit vectors introduced in Subsection A.1. Concerning the Jacobian of the gradient of the local model,
we consider an arbitrary increment 86 := (da,db,dc) € R3 x R? x RV and use the expressions (E.54)
and (E.55) where, again, the last summand is replaced by:

2% 15 1 1 1
— (N3(8)  (N5(6%))),

—_ 14 1 —
FL(N4(8) (N4 (0™,

] > - ((Kqa - 6a) " - vech* (eg\i,)) -alm,(a)

+ K] -vech*(ell)) - (Kq - 8a)) + (vech(W)); - ( NSL(Z))? 1 Nf(i;))?] (K] - vech*(el?) .a1mn(a))},
(E.64)
and by
al 3 1 1 4 1 T * (o (1)
2; { <L1 [(Ng(e))i ~ @™y | L l(N4(0))i - (N4(0(’€>))i] ) - ((Kpp - 8b) " - vech*(e})) - alm,, (b)
L3 Ly

5+

I ek (@) - (Ky - 8b)) + (vech(W)); - [(zvg(e)). (Na(6))?

Ky -vech*(eg\i,)) -almn(b))},
(E.65)

respectively, with W := (Kq - a) - alm,(a)T + alm, (a) - (K, - 6a)T + (Kp - 6b) - alm,, (b)" + alm,, (b) -
(Kp - 6b) T and Kaa, Kpp as in (E.54) and (E.55). Finally, we also have

ToVef™® (60) = HMdc + Ly math* (math(c) ™' math(dc) math(c)™"). (E.66)

The relevant blocks of the Jacobian matrix are obtained from (E.54), (E.55) with (E.64) and (E.65),
respectively, and from (E.66) by taking the corresponding increments §60. For example, the elements
(1,1), (1,2), and (1,3) of the Jacobian require taking increments of the form (da, 0,0), (0, b,0), and
(0,0, dc), respectively.

E.4 The scalar DCC model

In this case the parameter matrices A, B € S, in (2.8) are of the form A = ai,i}, B = bi,i,}, with
a,b € R. The intrinsic parameter subspace P is in this case R and its dimension P = 1; we denote
0 := (a,b) € R x R. The scalar DCC model specification together with the associated stationarity and
positivity constraints are provided in (2.30)-(2.31).

Constraints and the local model In this case, the necessary constraints reduce to three linear
positivity conditions, namely:
L1(8) :=1—-CMa— Vb >0, (E.67)
Ly(a) := —CPa >0, (E.68)
La(b) := —C¥b >0, (E.69)
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where L1(0), Ly(a), L3(b) € R, ch = Clgl) =1, and C¥ = CZES) = —1. The local penalized model for
the optimization problem (3.7) is given in this case by

3
7 (8) = 7(6™) + Vs (6")(6 — 6%)) + (0.~ 6" THO(@ — 0¥) + > LDy (6,6%), (E.70)

Jj=1

where the vector L; := (L%,L%,L:{’)T contains the penalization strengths, f(6*)) is minus the log-
likelihood function in (3.1), Vo f(8%%)) = —VglogL(6'®) is its gradient, determined by relations (D.1)-
(D.5), and (D.9) in Proposition D.1, and H® is its Hessian computed at the point 8. The Bregman
divergences associated to each of the constraints (E.67)-(E.69) and obtained from (3.6) take the following
expressions:

l—a—-2»b l1—a-—29

(k)y — _ _
Dy, (0,6') = T 0t —p® log1 — ) 1, (E.71)
(k)y _ a a
DL2 (0,0 ) = m - log% -1, (E72)
b b
(B)y —

Gradient of the local model A straightforward computation yields:

~ 1 1 1 1
(k) — (k) (K) (q — oK) 1 _ N

VO (6) = Vs 6) + BP0 - o) + 1 | {omg - T g | - B |5~ ] (ET
F(k _ (k) (k) k 1 1 1 3|1 1

vbf( )(0)_vbf(0 )+Hb (b_b( ))+L1 |:1—(Z—b_ 1_a(k)_b(k):| _Ll |:b_ p) | (E75)

where V,f(8%), V,f(8"*)) are the components of the gradient of minus the log-likelihood function
Vo f(0™) = —VglogL(0™  r) determined by the expressions (D.1)-(D.5) and by the relation (D.9).

Jacobian of the gradient of the local model A straightforward computation yields, for any
(da,0b) € R x R, the following expressions:

< da + 6b da

ToVaf® (6a,6b) = HFda + L}m + pr, (E.76)
. 8b + b 8b

ToV, f®) (6a,6b) = HM s + L}m + Il (E.77)

The (1,1) and (1, 2) blocks of the Jacobian matrix can be obtained from (E.76) by taking increments
of the form (éa,0), (0,dd), and the (2,1) and (2, 2) with increments of the type (da,0), (0,dd) in (E.77),
respectively.

Remark E.4 In the non-targeted version of the scalar DCC model we consider the parameters 6 :=
(a,b,¢) € RxRxRY, N := in(n+1) subjected to the positivity an stationarity constraints (2.31)-(2.32),
which amount to three linear conditions, namely, (E.67)-(E.69), together with the positive semidefinite-
ness constraint

M (c) :==math(c) = 0 € S,,. (E.78)

The local penalized model for the optimization problem (3.7) in the scalar non-targeted DCC model case
is obtained from (E.70) by adding the term associated to the constraint (E.78), namely, LoDy, (6, 0%),
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with Lo the corresponding penalization strength. The log-likelihood function, its gradient, and the Jaco-
bian of the gradient of the local model are obtained directly from (D.1)-(D.5), and (D.9) in Proposition
D.1 taking into account Remarks D.2 and D.4. In relation (E.70) the Bregman divergence associated
to the additional constraint (E.78) is obtained by using (3.5):

Dys(e,e®) = tr(M(ce) - M(c®)™1) —log det(M(c) - M (™)™t —n. (E.79)

The gradient of the local model (E.70) with (E.79) has the following third component in the non-targeted
case:

Vef® (0) = Vof(0%)) + HP (¢ — ™) — Ly math* (math(e) ™" — math(c®)~1). (E.80)

The same applies to the Jacobian of the gradient of the local model. The expressions (E.76) and (E.77)
remain valid for any 60 := (da, 6b,6c) € R x R x RY and, additionally, we provide

TV f*) (86) = HF e + Ly math* (math(c) ' math(de) math(c) ™). (E.81)

The relevant blocks of the Jacobian matrix of dimension three are obtained from (E.76), (E.77), and
(E.81) by taking the corresponding increments 0. For example, the elements (1, 1), (1,2), and (1, 3) of
the Jacobian require taking increments of the form (da,0,0), (0,6b,0), and (0,0, dc), respectively.

F Detailed computations of the results in Section E

F.1 The Hadamard DCC model

The gradient of the local model The computation of Vg f (k) (0) requires the expressions of the gra-
dients of each of the divergences in (E.10)-(E.12). We start with the Bregman divergences Dy, (a, a®),
D, (b,6®) €S, in (E.10)-(E.11) related to the positive semidefiniteness constraints (E.6) and (E.7),
respectively. We have

VaoDir, (a,a™) = —math*(M;(a) ™" — Mi(a™)™), (F.1)
VD, (b, b)) = —math*(M(b) ™" — Ma(6™) 1), (F2)
where math* : S, — R" is the adjoint map of the operator math : RY — S,,, both introduced in
Subsection A.2. We now provide the expression of the gradient of the divergence D, (6, B(k)) €S,

defined in (E.12) and related to the positive definiteness constraint (E.8). By relation (E.2) it can be
written down as

VoD, (8,00 = (math*((Ms(8) ™" — Ms5(6%)~1) ® ), math*((Ms(8) " — M5(6")~1) @ 9)),
(F.3)

where we just used that the tangent map To M3 : RY x RN — S, for any 860 := (da, db) € RN x RV
is given by

ToM; - 66 = —math(da + db) & S. (F.4)

The substitution of (F.1)-(F.3) into (E.1) gives the components (E.13)-(E.14) of the gradient of the
local model (E.9) for the Hadamard family, as required.
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The Jacobian of the gradient of the local model The only new element required in the expres-
sion (E.5) are the adjoints Ty M; : S, — RN x R™ of the tangent maps TpM; : RY x RN — S,,,
j =1,2,3. In the case of j = 1 and j = 2, these adjoints are given by the operator math*. We now
compute the expression for the adjoint map Ty Ms : S, — RN x RY by dualizing (F.4) for A € S,
arbitrary and obtain
(Tg M5 - A, (da, b)) = (A, TeM;(da,db)) = —tr (A((math(da + db)) ® S)) = —tr ((math(da) ® S)A)

—tr ((math(db) © S)A) = —tr ((A ® S) math(da)) — tr (A @ S) math(db))

= —(A® S, math(da)) — (A ® S, math(db)) = —(math* (A © 5), da)
—(math*(A ® S),db) = ((math* (A ® S), math*(A ® 5)), (da, db)),

where we used the Hadamard product trace property (A.4). These equalities show that
TgM; - A = — (math"(A® S), math*(A® 5)). (F.5)
The relations (E.15)-(E.16) hence follow from (E.5), as required.

F.2 The rank deficient DCC model

Gradient of the local model The computation of the gradient V f () requires the expressions for
the gradients of the components of each of the Bregman divergences defined in (E.29)-(E.31). Regarding
the divergences (E.29)-(E.30) associated with the identification constraints we have

. 1 1 i . . 1. . .
VgD]Ll(H,O(k)) =— [ - (k)l eg\,ﬁ)7 i =n(j—1)+=-iB8—j), je{l,...,r}, (F.6)
aij aij 2
j (k)y _ 1 1 G;) - 1, . .
VGDL2(670 )__ ;_ b(k) eN*? 27_n(]_1)+§.](3_])a J 6{1,...,7"}, (F7)

where we recall that e(”) € RN" is the canonical unit vector whose i;-th entry equals one. We now
proceed with the positive definiteness constraint (E.27), for which we recall that

M (6) = (ini] — mat, (a) mat, (a) — mat, (b) mat, (b)) ® S.

In order to provide the gradient of the Bregman divergence associated to the constraint (E.27), we refer
to the relation (E.2), whose explicit formulation requires the expression of the adjoint map

;M S, — RN " x RY". We hence first determine the corresponding tangent map ToM : RY " x
RN" —'S,. Consider an arbitrary element 60 = (da,db) € RN x RY". Then,

ToM - 60 = —(mat,(da)mat,(a) " + mat,(a)mat,(da)’ + mat,(db)mat,(b) " + mat,(b)mat, (b)) ® S.

We dualize this expression in order to obtain the required adjoint map. For any element A € S,, we
have:

(ToM - A, (da,db)) = (A, ToM - (da, éb))

A, (mat,(da)mat,(a)" + mat,(a)mat,(da)’ + mat,(db)mat,.(b)" + mat,(b)mat,(6b)") ©® S)
A, (mat,(da)mat,(a) ") ® S) — (A, (mat,(a)mat,(da) ") ® S) — (A, (mat,(6b)mat, (b)) ® S)
A, (mat, (b)mat,(db) ") ©® S) = —((A ® S)mat,(a), mat,(da)) — (mat,(a)" (A ® S), mat,(da)")
(A ® S)mat,(b), mat,(6b)) — (mat,.(b) " (A ® S), mat,.(db) ') = =2 (mat’((A © S)mat,(a)),da)
— 2 (mat)((A ® S)mat, (b)), db) = —2((mat; ((A © S)mat,(a)), mat:((A © S)mat,(b))), (da, db)).

i

—
—
—
=
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Recall that since by Proposition A.1 mat} equals vec,, we hence have
TgM - A = =2 (vec,((A ® S)mat,(a)), vec,((A © S)mat, (b)) € RNV x RN, (F.8)

If we substitute (F.8) into (E.2) we obtain the following expression for the gradient of the Bregman
divergence Dy (6,0%):
VoD (8,0%) = Ty M(M(0)™" — M(O™) 1) = 2 (vee, ((M(0)~ — M(6W)~) © S) mat, (a)),
vee, (M(0)~' — M(6%)~1) ® S) mat,(b))).
(F.9)

Finally, the relations (F.6), (F.7), and (F.9) lead to the expressions (E.32)-(E.33) for the components
of the gradient for the local model (E.28) in the case of the rank deficient family.

Jacobian of the gradient of the local model We use the general expression (I£.5) to determine the
tangent map of Vg f(*)(0) for any 66 := (8a,db). The only ingredient that needs to be specified in order
to apply (E.5) is the tangent map of the gradient VgD (6,0 (F.9) of the Bregman divergence (E.31)
associated to the positive definiteness constraint (E.27). A straightforward computation yields
To(VoDrr(0,6™))) - 60 = —Tp(Ts M(M(0) ™" — M(0P) 1) - 56
=2 Ty (vecr(((M(B) L M(O™)~1) © S)mat,(a)), vee,((M(0)F — M(OX)~1) ® S)mat, (b ))) 56
= —2(vec,((M(8)" (ToM - 6)M (0)™") © S)mat,(a) — (M ()" — M(6™)™") © S)mat, (sa)),

vee, ((M(0) ™ (ToM - 60)M (0)™") © S)mat, (b) — (M (8) " = M(0™)™!) © S)mat,(8b))).

(F.10)

The substitution into (E.5) of the expressions for the tangent maps and their adjoints provided in this
appendix yields the relations (E.34)-(E.35) that can be used to obtain the blocks of the Jacobian matrix
for the local model (E.28) in the case of the rank deficient DCC specification.

Remark F.1 When working with the non-targeted version of this model, we need to add the Bregman
divergence (E.39) to make the extra parameter positive definite. Its gradient is obtained analogously
o (F.1)-(F.2). We now carry out the computation of the gradients of the Bregman divergences (E.40)
related to the stationarity constraints (E.37)-(E.38) that need to be added separately in this case by
using the relation (E.3). In order to provide explicit expressions for those gradients, we first compute
the tangent maps TgN; : (RN X RYT xRV — RN, 5 e {1,2):

ToN; - 6 =(—1)7 - vech(mat,(da)mat,(a)" + mat,(a)mat,(da)"

+ mat,.(8b)mat,.(b) " + mat,(b)mat,(db) "), (F.11)
with 60 := (da,db,dc) € RN xRN xRN, We determine their adjoints Ty N, : RNV — RV xRN xRN,
j € {1,2} by dualizing (F.11). Consider an arbitrary vector v € RY. We then have
(T4 N; - v,80) = (v,ToN; (60)) = (—1)7 (v, vech(mat, (da)mat,(a)" + mat,(a)mat,(da)"

+ mat,.(8b)mat,.(b) " + mat,(b)mat,(6b) ")) = (=1)7((v, vech(mat,(da)mat,(a) "))

+ (v, vech(mat,(a)mat,(da) ")) + (v, vech(mat, (b)mat,.(b) ")) + (v, vech(mat,.(b)mat,.(6b) "))
= (—1)?({(vech*(v)mat,(a), mat,(da)) + (mat,(a) " vech*(v), mat,(da) ") + (vech*(v)mat, (b), mat, (5b))
+ (mat,(b) "vech*(v), mat,(6b) ")) = 2- (—1)7 ((mat (vech* (v)mat,(a)), da)
+ (mat’(vech*(v)mat, (b)), b)) = 2 - (—1)7((vec,(vech*(v)mat,(a)), vec,(vech*(v)mat, (b)), (da, db))),
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where we used that, by Proposition A.1, mat; equals vec,. We hence obtain that
TgN; -v =2 (—1) (vec,(vech* (v)mat,(a)), vec,(vech* (v)mat, (b)), j € {1,2}. (F.12)

Consequently, the gradients of the components of the Bregman divergences D, (0 6™y, ie{1,...,N},
j € {1,2} are given by the relations

. 1 1
VoD, (0,0%)) =2 (-1~ -
(N; ()i (N;(6™)));
X (vec,(vech” (eg\i,)) - mat,(a), Vec,.(vech*(e%)) - mat,. (b)), (F.13)
where e JeRN,i¢c {1,..., N} are the canonical unit vectors.

F.3 The Almon DCC model

Gradient of the local model We determine the explicit expression for the gradient of the local
model which requires the computation of the gradients of each of the Bregman divergences presented
n (E.49)-(E.51). Concerning the divergences associated with the nonlinear positivity constraints we
use the relation (E.3) and for the divergences Dy, (0,0")) and Dy, (0,0™)) related to the inequalities
(E.45)-(E.46) we write

o 0.0 = = |G~ ) (). (1

VoDu,(0,0%)) = — [(almnl(b))l - (almn(lb(k N ] (KbT ~e£})), (F.15)

where we used the expression (A.17) of the adjoint Talm,, : R* —s R3 of the tangent map Ty alm,, :

R3 — R"; recall that K4, Kp € M, 3 are the matrices introduced in (A.16) and el ¢ R” is the
canonical unit vector. We now proceed with the positive definiteness constraint (E.27), for which we
recall that

M (8) = (ini) — alm,, (a)alm, (a)" — alm,, (b)alm, (b)) ® S.

In order to compute the gradient of the Bregman divergence associated to the constraint (E.27), we
refer to the relation (E.2), whose explicit formulation requires the expression of the adjoint map T4 M :
Sp, — RV xRN". We hence first determine the corresponding tangent map ToM : RN xRN — S,
consider an arbitrary element 60 = (da,db) € RN™ x RN" then

ToM-860 = —((K,-6a)-alm,(a) T +alm, (a)- (Kq-6a)" +(Kp-8b)-alm, (b) ' +alm, (b)-(Kp-6b)T)®S

and dualize it in order to obtain the required adjoint, that is, for arbitrary A € S,,, we compute

(TyM - A, (da, b)) = (A, TeM - (da, db))

— (A, (Kq - 8a) - alm, () +alm,, (a) - (K, - 8a)" + (Kp - 8b) - alm,, (b) " + alm,, (b) - (Kp - 6b)7) @ S)

— (A, ((Kq - 8a) - alm,(a) ") © ) — (A, (alm,, (@) - (Ka - 6a)T) © S) — (A, (Kp - ) - alm,, (b)) © 5)
— (A, (alm,, (b) - (K3 - 6b) ") ® S) = —((A ® S)alm, (a), K - da) — (alm,(a) (A ® S), (K, -da)")

— (A ® S)alm, (b), Kp - 8b) — (alm,,(b) " (A ® S), (Kp-b)T) = =2 (K] (A ® S)alm,,(a), da)

—2 (K, (A ® S)alm, (b), 8b) = —2((K ] (A ® S)alm, (a), Ky (A © S)alm, (b)), (da, 5b)).



Estimation and empirical performance of non-scalar DCC models 29

This relation is equivalent to
TyM-A= -2 (K] (A® S)alm,(a), Ky (A ® S)alm,, (b)) € R? x R3. (F.16)
Substituting directly (F.16) into (E.2) yields the following expression for the gradient of the Bregman
divergence Dy (6,6%))
VoD (0,0%) = —TgM(M ()™t — MO ™) =2 (K] (M(0)~F — M(O*)™1) © ) alm,(a),
Ky (M(0)" = M(0™)™") © ) alm, (b)).
(F.17)

Finally, the relations (F.14), (F.15), and (F.17) lead to the expressions (E.52)-(E.53) for the components
of the gradient of the local model (E.48) in the case of the Almon family of DCC models.

Jacobian of the gradient of the local model We use the general expression (E.5) to determine the
tangent map of Vg f(*)(8) for any increment 86 := (da, db) € R? x R3. In order to apply (E.5), we only
need to specify the tangent map of the gradient VoD, (6,0%) (F.17) of the Bregman divergence (E.51)
associated to the positive definite constraint (E.47). A straightforward computation yields

To(VeD1ri(0,0%)) - 66 = —To(Ty M(M(0)~ — M(6W)71)) - 56
=2 Tp(K, - (M(0)" = MO™)™) @ 5) - alm,(a), Ky - (M(0)™' = M(0%))™1)© S) - alm, (b))

=2((Kqq -0a)" - (M(8)™ = M%) © S) - alm,(a) — Kq - (M(0)"H(ToM - 56)M(0)™) © S)
calmy, (@) + K, - (M(0)™ = M(O0™) ™) ©5) - (Ko - 8a), (K- 6b) " - (M(0)™ — M(OF)™ ") @ S)
-alm,, (b) + Kp - (=M (0) " (ToM - 66)M(0)™") © S) - alm,, (b) + K, - (M(8)"' — M(0%)"1) o 9)
- (K - 6b)), (F.18)

where

Kaa - 0a:= (0, | k. © (K?-8a) | K2 © (K?-da)),
Kpp - 0b:= (0, | k} © (Ky - 6b) | k2 © (K} - 6b)),
K3 = (0, |k}, ®alm,(a) | k2 © alm,(a)),

Ky := (0, | k), ® alm, (b) | k5 ® alm, (b)) .

The substitution of the expressions for the tangent maps and their adjoints provided in this appendix
into (E.5) yields the relations (E.54)-(E.55) that can be used to obtain the blocks of the Jacobian matrix
for the local model (E.48) in the case of the Almon DCC specification.

Remark F.2 In the non-targeted version of the Almon DCC model the parameters 8 = (a,b,c) €
R? xR? xRY are subjected to the identification constraints (I.45), (E.46), to the stationarity constraints
(E.56)-(E.57), and to the positivity constraint (E.58). For the first two constraints the computations are
given above, for the last one they can be obtained analogously to the ones provided for (E.10)-(E.11)
in Section F.1. As for the stationarity constraints, we now carry out the necessary computation. We
start by computing the gradients of the components DY, (6, 0, Dy, (e, 0", i e {1,...,N} of the
Bregman divergences associated to the nonlinear positivity constraints in (E.56) and (E.57), respectively.
In order to do that we first need to compute the maps TpN; : RV xRN xRN — RN, j e {3,4}. Let
80 := (da,db,6c) € R? x R? x RY arbitrary, then the following relations hold true:

ToN; - 660 =(—1)7 - vech((K, - da) - alm,(a) " + alm, (a) - (K, - da)’
+ (Kp - 8b) - alm,, (b) " +alm,, (b) - (Kp-8b)"), j € {3,4}. (F.19)
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In order to use (E.3), we need to determine the adjoint maps TgN; : RY — RV x RV" x RN by
dualizing the relations (F.19). Let v € RY arbitrary; we have

(TgN; - v,80) = (v,ToN; (60)) = (—1)7 (v, vech((Kg - da) - alm,(a)" + alm, (a) - (K, - da)"
+ (Kp - 8b) - alm,, (b) " + alm,, (b) - (Kp - 6b))) = (—=1)7({v, vech((Kq - 6a) - alm, (a) "))
+ (v, vech(alm, (a) - (Kq - 8a)")) + (v, vech((Kp - 8b) - alm,, (b) ")) + (v, vech(alm,, (b) - (Kp - 6b) 7))
=(—1) ((vech* (v) - almy,(a), K4 - 8a) + (alm, (a) " - vech*(v), (Kq - 8a)) + (vech*(v) - alm,, (b), Kp - 6b)
+ (alm,, (b) T - vech*(v), (Kp - 6b)T>) =2(-1)7 ((K;r -vech*(v) - alm, (a), da) + (K, - vech*(v) - alm,, (b), 6b))
=2(—1) (K] - vech*(v) - alm, (a), Ky - vech*(v) - alm, (b)),80), j € {3,4},
which immediately yields that
TGN -v=2(-1)7 (KI -vech*(v) - alm, (a), Ky - vech*(v) - almn(b)), j€{3,4}.

We hence obtain the following expression for the components of the gradients of the divergences
Dy, (0,0%)) and Dy, (0,0™):

] (K - vech® (el)) - alm, (a)),

1

(N; () (N;(8™)),
1
(

* 0 (1) .
@ <Nj<e<k>>>i] (o earen): alm"(b))) e

(F.20)

G Additional empirical results

This section completes the results in Section 4 of the paper and also reports analogous empirical findings
for a dataset based on the same assets but on a different time period (called Period I). In the case of
Period I, the price quotes are taken from January 19th, 1996 to December 21st, 2010 which amounts
to 3750 observations in the sample. The first 3000 observations (January 19th, 1996 - December 31st,
2007) are reserved for model estimation and the remaining 750 are used for an out-of-sample study.
Notice that Period I contains the 2008-09 crisis events in the out-of-sample interval, while the dataset
used in the main body of the paper (referred to as Period II) includes these events exclusively in the
part of the sample used for estimation purposes.

Figure 1 complements Figure 2 in the main body of the paper and plots, for Period II, the values
of the entries of the parameter vector b for of the rank one deficient and Almon shuffle models in
dimension 30 with the assets ordered according to the Almon shuffle estimation. The figure also shows
the corresponding estimate implied by the scalar model, which is the square root of the parameter b in
(2.30), and it illustrates the flexibility of the rank one deficient and Almon models with respect to the
scalar one. The pattern of estimates of the entries of b of the Almon model is convex.

The entries of a and b in the Almon shuffle model for both Figure 2 in the paper and Figure 1 are
computed by using the Almon function defined in Section 2.4 using the estimates of the three intrinsic
parameters of Almon function for each of the dimensions considered. Table G.1 reports on these Almon
parameters for Period I and Period II.

Tables G.2 up to G.10 correspond to Period I and are analogous to the tables provided in Section 4
of the paper for Period II. More specifically, Tables G.2, G.3, G.4, G.5-G.6, G.7-G.8, and G.9-G.10 (for



Estimation and empirical performance of non-scalar DCC models 31

DJIA dataset. Period 1

n ai as as b1 bo b3

-0.97647 -0.02374  0.01028  0.01344 -0.02047  0.00293
10 -0.94870 -0.00176  0.00065 -0.00758  0.00247 -0.00042
15 -0.96304 0.00090 0.00019 -0.01338 0.00346 -0.00030
20 -0.97398  0.00448 -0.00015 -0.00434 -0.00001 -0.00002
25 -0.96169  0.00099 -0.00001 -0.01266  0.00112 -0.00004
30 -0.96930 0.00124 -0.00001 -0.01275  0.00121 -0.00004

(31

DJIA dataset. Period II

n ai as as b1 bo b3

-0.78996 -0.07976  0.00909 -0.02519  0.01330 -0.00232
10 -0.87945 -0.01598  0.00117 -0.00609 -0.00197  0.00014
15 -0.90004 -0.01347  0.00090 -0.00926  0.00122 -0.00012
20 -0.93593  0.00045 -0.00007 -0.00144 -0.00152  0.00007
25 -0.94422  0.00077 -0.00005 -0.00140 -0.00112  0.00004
30 -0.95261  0.00113 -0.00004 -0.00088 -0.00095  0.00003

(1

Table G.1: Estimates of the parameters of the Almon functions (almy,(a)); = a1 + exp(azi + a3i?) and (almy(b)); =
b1 + exp(bai + b3i?) for the Almon shuffle models. The symbol i represents the entry number and n is the
dimension of the model.
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Figure 1: Estimates of the entries of the parameter b of the rank one deficient and Almon shuffle models for the thirty assets
case in the order determined by the Almon shuffle estimation (dataset of Period II).

Period I) correspond to Tables 4.2, 4.3, 4.5, 4.6-4.7, 4.8-4.9, 4.10-4.11 (for Period II), respectively.
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DJIA dataset. Period 1.
n Scalar Almon Almon Shuffle Rank Deficient Rank Deficient Hadamard
(r=1) (r=2)
-logL -13.9889 -13.9892 -13.9912 -13.9926 -13.9932 -13.9945
5 AICrank -27.9665%  -27.9644% -27.96832 -27.9685! -27.9643° -27.95916
-logL -28.3038 -28.3042 -28.3038 -28.3102 -28.3130 -28.3163
10 AICrank -56.58622  -56.58433 -56.58354 -56.5870" -56.5807° -56.53926
-logL -42.0486 -42.0489 -42.0510 -42.0592 -42.0670 -42.0725
15 AICrank -84.0659%  -84.0637° -84.06802 -84.0684! -84.0653* -83.95500
-logL -56.6593 -56.6597 -56.6613 -56.6742 -56.6855 -56.6951
20 AICrank -113.2773*  -113.27535 -113.2786° -113.2818! -113.27902 -113.07026
-logL -71.1817 -71.1819 -71.1835 -71.1985 -71.2108 -71.2296
25 AICrank -142.3120%  -142.30984 -142.31292 -142.3137! -142.3062° -141.9760°
-logL -85.9232 -85.9253 -85.9267 -85.9523 -85.9599 -86.0091
30 AICrank -171.7851*  -171.78663 -171.78942 -171.8047" -171.7811° -171.33816
AIC score® 193 247 152 6! 26° 36°

Table G.2: Normalized values of minus the log-likelihood function (-log(L)/Test) and associated AIC statistics. The
smallest values of minus the log-likelihood function are displayed in black bold. Exponents on the AIC row
indicate the rank of the model from 6 (the worse) to 1 (the best). The “AIC score” row at the bottom contains
aggregated ranks by models. Figures in red point to the model that exhibits the lowest AIC value.
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DJIA dataset. Period I. Matrix A
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n MacGyver Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
mean (median)  0.0111 (0.0077)  0.0040 0.0083 0.0030 0.0042 0.0048 0.0046
5 std 0.0120 - 0.0078 0.0060 0.0071 0.0015 0.0069
min 0.0000 0.0040 -0.0012 -0.0018 -0.0014 0.0018 0.0001
max 0.0559 0.0040 0.0243 0.0172 0.0216 0.0070 0.0296
mean (median)  0.0097 (0.0069)  0.0046 0.0056 0.0076 0.0044 0.0050 0.0045
10 std 0.0102 - 0.0046 0.0055 0.0037 0.0011 0.0016
min 0.0000 0.0046 -0.0021 0.0024 -0.0015 0.0035 0.0025
max 0.0466 0.0046 0.0279 0.0437 0.0193 0.0083 0.0101
mean (median)  0.0095 (0.0064)  0.0036 0.0038 0.0039 0.0032 0.0036 0.0036
15 std 0.0105 - 0.0038 0.0026 0.0025 0.0004 0.0015
min 0.0000 0.0036 -0.0030 0.0005 -0.0034 0.0024 0.0014
max 0.0559 0.0036 0.0237 0.0172 0.0146 0.0042 0.0088
mean (median)  0.0088 (0.0059)  0.0026 0.0025 0.0029 0.0025 0.0026 0.0026
20 std 0.0100 - 0.0024 0.0015 0.0020 0.0001 0.0006
min 0.0000 0.0026 -0.0025 0.0006 -0.0034 0.0023 0.0009
max 0.0559 0.0026 0.0128 0.0088 0.0100 0.0029 0.0035
mean (median)  0.0092 (0.0061)  0.0024 0.0023 0.0033 0.0029 0.0023 0.0024
95 std 0.0099 - 0.0023 0.0020 0.0021 0.0000 0.0004
° min 0.0000 0.0024 -0.0037 0.0004 -0.0036 0.0023 0.0015
max 0.0559 0.0024 0.0139 0.0162 0.0141 0.0024 0.0033
mean (median)  0.0091 (0.0060)  0.0021 0.0019 0.0028 0.0024 0.0021 0.0022
30 std 0.0100 - 0.0023 0.0018 0.0012 0.0001 0.0006
min 0.0000 0.0021 -0.0047 -0.0003 0.0005 0.0018 0.0010
max 0.0578 0.0021 0.0127 0.0100 0.0090 0.0023 0.0036
DJIA dataset. Period I. Matrix B
n MacGyver Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
mean (median)  0.7731 (0.9484)  0.9764 0.9354 0.9873 0.9774 0.9692 0.9696
5 std 0.3311 - 0.0439 0.0115 0.0106 0.0107 0.0088
min 0.0000 0.9764 0.8700 0.9576 0.9560 0.9539 0.9584
max 0.9974 0.9764 0.9803 0.9994 0.9990 0.9943 0.9921
mean (median)  0.8623 (0.9698)  0.9801 0.9745 0.8791 0.9804 0.9769 0.9797
10 std 0.2744 - 0.0081 0.1978 0.0094 0.0069 0.0097
min 0.0001 0.9801 0.9580 0.2466 0.9600 0.9606 0.9509
max 0.9974 0.9801 0.9917 0.9955 0.9971 0.9877 0.9921
mean (median)  0.8707 (0.9652)  0.9805 0.9781 0.9701 0.9810 0.9799 0.9793
15 std 0.2372 - 0.0069 0.0230 0.0130 0.0014 0.0106
min 0.0000 0.9805 0.9607 0.8915 0.9305 0.9777 0.9434
max 0.9974 0.9805 0.9935 0.9972 0.9965 0.9835 0.9933
mean (median)  0.8514 (0.9656)  0.9871 0.9862 0.9756 0.9854 0.9865 0.9865
2 std 0.2717 - 0.0030 0.0247 0.0080 0.0012 0.0029
min 0.0000 0.9871 0.9795 0.8382 0.9580 0.9847 0.9780
max 0.9977 0.9871 0.9935 0.9975 0.9970 0.9907 0.9913
mean (median)  0.8398 (0.9610)  0.9857 0.9851 0.9589 0.9748 0.9861 0.9847
95 std 0.2741 - 0.0027 0.0436 0.0200 0.0014 0.0028
min 0.0000 0.9857 0.9792 0.7953 0.8685 0.9833 0.9766
max 0.9977 0.9857 0.9926 0.9970 0.9970 0.9900 0.9892
mean (median)  0.8364 (0.9617)  0.9864 0.9857 0.9689 0.9779 0.9866 0.9841
30 std 0.2781 - 0.0022 0.0272 0.0159 0.0026 0.0047
min 0.0000 0.9864 0.9795 0.8425 0.9033 0.9828 0.9674
max 0.9977 0.9864 0.9932 0.9971 0.9958 0.9960 0.9911

Table G.3: Period I. Estimated parameter matrices A and B of (2.8). Mean, median, standard deviation, minimum and
maximum of the entries of the estimated matrices are reported. “MacGyver” stands for the method with this
name introduced in [Eng08| based on the use of bivariate scalar DCC models; in this case the median values
of estimates are reported between parentheses.
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DJIA dataset. Period I. MCS for the correlation of the standardized returns.
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n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 Position 1 6 3 5 2 4
p-value  1.000 0.066 0.170 0.170 0.170 0.170
10 Position 2 6 1 3 4 5
p-value  0.108 0.085 1.000 0.108 0.108 0.108
15 Position 2 6 1 4 3 5
p-value  0.683 0.001 1.000 0.159 0.159 0.159
20 Position 1 6 3 5 2 4
p-value  1.000 0.001 0.025 0.025 0.025 0.025
25 Position 2 6 5 3 1 4
p-value  0.004 0.000 0.004 0.004 1.000 0.004
30 Position 2 6 5 3 1 4
p-value  0.000 0.000 0.000 0.000 1.000 0.000
Score 10 36 18 23 13 26

Table G.4: Model confidence sets (MCS) constructed using the loss function (4.2) based on the correlation of the stan-
dardized returns defined in (4.3). For each model and dimension, the integer value in the first row indicates
the order of elimination of the model from the MCS (6 stands for the first eliminated model, 5 for the second
eliminated model, and so on). In the second row we report the p-value of the test leading to the decision of
eliminating the given model from the MCS. The set of integer values printed in bold red identifies the MCS
at the confidence level of 90%. The union of integer values printed in bold black and bold red identifies the
MCS at the confidence level of 95%. The score of each model in the last row is the sum of the integer values
of the six dimensions.
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DJIA dataset. Period I. Engle-Colacito regression test for the minimum variance portfolio

returns.
n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 t-stats  3.76%* 4.04* 4.13* 4.09* 3.81* 3.98*
p-value  0.00 0.00 0.00 0.00 0.00 0.00
10 t-stats 1.73 1.80 1.67 1.90 1.74 1.65
p-value  0.08 0.07 0.10 0.06 0.08 0.10
15 t-stats -0.55 -0.16 0.05 0.26 -0.45 -0.16
p-value  0.58 0.87 0.96 0.80 0.65 0.87
20 t-stats -0.51 -0.02 0.44 0.43 -0.43 -0.22
p-value  0.61 0.99 0.66 0.67 0.66 0.82
95 t-stats 1.47 2.17* 2.48* 2.15% 1.56 1.96
p-value  0.14 0.03 0.01 0.03 0.12 0.05
30 t-stats  2.70%* 3.73* 3.85% 3.60* 2.97* 3.43%*
p-value  0.01 0.00 0.00 0.00 0.00 0.00

Table G.5: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept A of the Engle-Colacito
regression (4.4) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
A = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.

DJIA dataset. Period I. Engle-Colacito regression test for the equally weighted portfolio

returns.
n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
=1 (r=2)
5 t-stats  2.72% 2.80* 2.87* 2.78%* 2.77* 2.82%
p-value 0.01 0.01 0.00 0.01 0.01 0.00
10 t-stats 1.99* 1.91 1.84 2.01* 2.06* 1.91
p-value 0.05 0.06 0.07 0.04 0.04 0.06
15 t-stats  -1.21 -1.57 -1.24 -1.44 -1.22 -1.29
p-value 0.23 0.12 0.22 0.15 0.22 0.20
20 t-stats  -2.32% -2.89% -2.16%* -2.84%* -2.29% -2.28%*
p-value 0.02 0.00 0.03 0.00 0.02 0.02
95 t-stats -1.94 -2.39% -1.68 -2.36* -1.86 -1.76
p-value 0.05 0.02 0.09 0.02 0.06 0.08
30 t-stats  -3.45%* -3.88* -3.10% -3.01% -3.18* -3.12*
p-value 0.00 0.00 0.00 0.00 0.00 0.00

Table G.6: Results of the Engle-Colacito regression test. The t-stat values refer to the intercept A of the Engle-Colacito
regression (4.4) obtained using a HAC estimator. The p-value can be used to test the null hypothesis that
A = 0. The symbol * (respectively **) indicates rejection at the 5% (respectively 1%) significance level. Values
corresponding to models that exhibit the maximum p-value for a given portfolio cardinality are printed in red.
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DJIA dataset. Period I. MCS of EPA for the minimum variance portfolio squared returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 Position 3 2 4 1 5 6
p-value  0.856 0.856 0.810 1.000 0.810 0.810
10 Position 4 2 1 3 5 6
p-value  0.335 0.579 1.000 0.335 0.335 0.270
15 Position 5 4 1 3 6 2
p-value  0.374 0.588 1.000 0.600 0.290 0.600
20 Position 2 5 4 6 3 1
p-value  0.206 0.206 0.206 0.206 0.206 1.000
25 Position 3 6 2 5 4 1
p-value  0.803 0.465 0.910 0.803 0.803 1.000
30 Position 1 6 5 4 3 2
p-value 1.000 0.383 0.407 0.407 0.407 0.638
Score 18 25 17 22 26 18

Table G.7: Model confidence sets based on the predictive ability for squared portfolio returns using the loss function
defined in (4.5). See the caption of Table G.4 for an explanation of the table entries.

DJIA dataset. Period I. MCS of EPA for the equally weighted portfolio squared returns.

n Scalar Hadamard Rank Deficient Rank Deficient Almon Almon Shuffle
(r=1) (r=2)
5 Position 2 5 4 6 1 3
p-value  0.296 0.296 0.296 0.002 1.000 0.296
10 Position 3 4 6 2 1 5
p-value  0.071 0.071 0.001 0.345 1.000 0.001
15 Position 1 6 2 5 3 4
p-value 1.000 0.005 0.685 0.005 0.326 0.199
20 Position 2 6 1 5 3 4
p-value  0.367 0.006 1.000 0.011 0.367 0.158
25 Position 4 5 1 6 2 3
p-value  0.005 0.004 1.000 0.004 0.061 0.049
30 Position 5 6 2 1 3 4
p-value  0.002 0.002 0.136 1.000 0.018 0.018
Score 17 32 16 25 13 23

Table G.8: Model confidence sets based on the predictive ability for squared portfolio returns using the loss function
defined in (4.5). See the caption of Table G.4 for an explanation of the table entries.



Estimation and empirical performance of non-scalar DCC models

DJIA dataset. Period I. HIT test of the minimum variance portfolio returns.

38

n Scalar ~ Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
1% 2.54 3.07 3.07 2.94 2.67 2.80
p-value 0.7895 0.9538 0.9549 0.9046 0.8707 0.9205
5 5% 6.81%* 7.21%* 6.94* 6.94* 6.94* 6.81%
p-value 0.0170 0.0108 0.0112 0.0112 0.0223 0.0172
10% 11.08** 11.48%* 11.75% 11.48%* 10.95%* 11.62
p-value 0.0085 0.0075 0.0211 0.0295 0.0362 0.0811
1% 1.60 1.87 1.74 1.74 1.60 1.60
p-value 0.5135 0.7272 0.9820 0.5750 0.5126 0.5120
10 5% 4.54 4.67 4.54 4.67 4.54 4.54
p-value 0.6107 0.5839 0.7906 0.6146 0.6113 0.6114
10% 9.35 8.95 8.68 9.48 9.21 9.21
p-value 0.1459 0.0816 0.1247 0.0738 0.1585 0.1588
1% 0.93 1.07 1.20 1.20 0.93 0.93
p-value 0.9965 0.1357 0.0845 0.2323 0.9968 0.9968
15 5% 4.14 4.41 4.41 4.54 4.14 4.14
p-value 0.2980 0.4356 0.4524 0.4987 0.2977 0.2992
10% 7.61 8.14 8.68 8.81 7.88 8.54
p-value 0.4368 0.6871 0.8502 0.5405 0.4536 0.8441
1% 1.20 1.47 1.47 1.34 1.34 1.47
p-value 0.2141 0.9301 0.5153 0.9826 0.3886 0.5197
20 5% 3.47 3.87 4.14 4.01 3.47 3.60
p-value 0.7794 0.7344 0.7765 0.7980 0.7794 0.7789
10% 7.48 8.28 8.41 8.41 7.61 7.74
p-value 0.9621 0.7913 0.9138 0.7433 0.9693 0.9448
1% 1.34 1.47 1.87 1.74% 1.34 1.60*
p-value 0.4985 0.9939 0.0772 0.0350 0.4985 0.0105
95 5% 4.67 4.81 5.07 5.21 4.67 4.81
p-value 0.6049 0.4531 0.7543 0.4600 0.6049 0.5051
10% 9.35 10.68 10.55 9.88 9.48 9.75
p-value 0.7228 0.9699 0.9094 0.9739 0.5810 0.7412
1% 1.74 2.54 2.80 2.40 1.87 2.27
p-value 0.7757 0.9153 0.9129 0.9175 0.8351 0.9213
20 5% 5.74 6.81 7.34 7.08 6.01 6.54
p-value 0.9235 0.9682 0.9890 0.9019 0.9568 0.6951
10% 10.28 12.28 12.02 11.21 10.68 10.81
p-value 0.8853 0.6322 0.9880 0.7384 0.9599 0.9487

Table G.9: Results of the HIT test.

For each assets cardinality n and model we report the average number of VaR

violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (4.6) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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DJIA dataset. Period I. HIT test of the equally weighted portfolio returns.
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n Scalar Hadamard Rank Deficient Rank Deficient Almon  Almon Shuffle
(r=1) (r=2)
1% 2.27 2.27 2.27 2.27 2.14 2.27
p-value  0.5905 0.6204 0.6210 0.6204 0.4791 0.6198
5 5% 6.28 6.54 6.54 6.54 6.01 6.54
p-value 0.7918 0.6796 0.6793 0.6776 0.5968 0.6796
10% 11.88 11.88 11.88 11.88 11.88 12.02
p-value 0.3977 0.2019 0.2019 0.2017 0.3792 0.2615
1% 1.47 1.34 1.47 1.34 1.47 1.47
p-value  0.9944 0.9936 0.9944 0.9931 0.9943 0.9944
10 5% 6.28 6.14 6.28 6.14 6.28 6.28
p-value  0.0708 0.1067 0.0717 0.1066 0.0703 0.0704
10% 9.48* 9.61%* 9.48%* 9.61% 9.48* 9.35
p-value  0.0390 0.0333 0.0403 0.0309 0.0382 0.2340
1% 1.07 1.07 1.07 1.07 1.07 1.07
p-value 0.9961 0.9960 0.9952 0.9952 0.9959 0.9956
15 5% 3.87 3.60 3.87 3.60 3.87 3.87
p-value 0.2759 0.2613 0.2753 0.2594 0.2758 0.2756
10% 6.81 6.54 6.41 6.41 6.68 6.54
p-value 0.1950 0.1605 0.0975 0.0969 0.1506 0.1652
1% 1.20 0.93* 1.20 0.93* 1.20 1.20
p-value  0.3060 0.0453 0.3059 0.0452 0.3061 0.3066
20 5% 2.67 2.54 2.67 2.67 2.67 2.67
p-value  0.3405 0.2177 0.3399 0.3356 0.3410 0.3409
10% 5.34 5.21 5.34 5.21 5.34 5.34
p-value  0.7912 0.7699 0.4568 0.7709 0.7925 0.4519
1% 0.80 0.53 0.80 0.53 0.80 0.67
p-value  0.9998 0.9253 0.9998 0.9184 0.9998 0.9992
95 5% 3.34 3.20 3.60 3.07 3.47 3.47
p-value  0.8904 0.9086 0.7351 0.9182 0.8690 0.8687
10% 6.14 6.01* 6.28 6.01%* 6.14%* 6.14%*
p-value  0.0501 0.0350 0.0719 0.0349 0.0499 0.0497
1% 0.80 0.93 0.93 0.93 0.80 0.80
p-value 0.9954 0.9759 0.9752 0.9778 0.9952 0.9951
20 5% 2.94 2.94 3.07 3.07 2.94 3.07
p-value  0.4821 0.4812 0.5690 0.5697 0.4807 0.5674
10% 6.01 5.87 6.14 6.28 6.14 6.28
p-value  0.6916 0.9274 0.7334 0.6628 0.7295 0.6599

Table G.10: Results of the HIT test.

For each assets cardinality n and model we report the average number of VaR

violations when this risk measure is computed at the 1, 5, and 10% confidence levels. The percentage printed
in red corresponds to the model that yields the closest number to the specified confidence level. The p-values
correspond to the F-test on the HIT regression (4.6) with five lags. The highest p-values are marked in bold.
When they imply that the null hypothesis of independence is rejected at the 5% (respectively 1%) level, the
corresponding average number of VaR violations is marked with * (respectively **).
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