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Abstract—This paper extends the notion of information
processing capacity for non-independent input signals in the
context of reservoir computing (RC). The presence of input
autocorrelation makes worthwhile the treatment of forecasting
and filtering problems for which we explicitly compute this
generalized capacity as a function of the reservoir parameter
values using a streamlined model. The reservoir model leading
to these developments is used to show that, whenever that
approximation is valid, this computational paradigm satisfies
the so called separation and fading memory properties that
are usually associated with good information processing per-
formances. We show that several standard memory, forecasting,
and filtering problems that appear in the parametric stochastic
time series context can be readily formulated and tackled via
RC which, as we show, significantly outperforms standard
techniques in some instances.
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I. INTRODUCTION

Reservoir computing is a recent but already well estab-

lished neural computing paradigm [1], [2], [3], [4], [5], [6],

[7] that has shown a significant potential in overcoming

some of the limitations inherent to more standard Turing-

type machines. This computation approach is characterized

by a simple and convenient supervised learning scheme, even

though its performance presents as a weak side a substantial

sensitivity to architecture parameters. This feature explains

the development in the literature of various linear and

nonlinear memory capacity measures [8], [9], [10], [11],

[12] as well as the study of different signal treatment

properties (see [13], [7] and references therein) that are

used to characterize and measure the information processing

abilities of these devices in order to be able to optimize them.

We have proposed several contributions in this direction

in our previous works [14], [15] in the context of RCs

constructed via the sampling of the solutions of a time-

delay differential equation. These RCs are usually referred to

as time-delay reservoirs (TDRs). More specifically, in [14]

we constructed a simplified model for those specific RCs

that allowed us to provide a functional link between the RC

parameters and its performance with respect to a given mem-

ory task and which can be used to accurately determine the

optimal reservoir architecture by solving a well structured

optimization problem. The availability of this tool simplifies

enormously the implementation effort and sheds new light

on the mechanisms that govern this information processing

technique. This approach was extended in [15] in order to

be able to handle multidimensional input signals and real-

time multitasking [4], that is, the simultaneous execution of

several memory tasks. Additionally, we used this approach to

estimate the memory capacity of parallel arrays of reservoir

computers. This reservoir architecture had been introduced

in [16], [17], where it was empirically shown to exhibit

various improved robustness properties.

The notion of capacity is defined using independent input

signals, which immediately limits its practical function-

ality in several aspects. Indeed, the use of independent

inputs makes empty of content the treatment of forecasting

problems. Additionally, most input signals that need to

be processed in specific tasks exhibit sizable autocorrela-

tion, which automatically precludes independence. Finally,

simple numerical experiments show that optimal reservoir

architectures with respect to a given memory task lose

that optimality as soon as the input signal ceases to be

independent.

All these facts call for a generalization of the notion of

capacity suitable for correlated signals and for techniques

to compute it. This is the main goal of this work. More

specifically, we use an extension of the RC model introduced

in [14] in order to generalize the memory capacity formulas

that were introduced in that paper to non-independent strictly

stationary signals. Moreover, the presence of input auto-

correlation makes worthwhile the treatment of forecasting

and filtering problems for which we extend the notion of

capacity and that we will explicitly compute as a function of

the reservoir parameter values. These results can be readily

used in the execution of specific tasks since the expressions

that we obtain are written in terms of various statistical

features of the input and the teaching signal that can be

simply estimated out of the training sample.

The results in this paper are formulated for general

discrete-time RCs that are not necessarily TDRs. We use the

generalization of the model in [14] to this context in order to

show that, for that approximation, RCs satisfy the so called

fading memory and separation properties that are typically

associated to good information processing performances
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(see [13], [7] and references therein).

II. RESERVOIR COMPUTING AND MEMORY CAPACITIES

The reservoir computing construction that we consider

is based on the choice of a nonautonomous discrete-time

dynamical system of the form:

x(t) = F (x(t− 1), I(t),θ), (1)

with t ∈ Z, x(t), I(t) ∈ R
N , and θ ∈ R

K . The map F :
R

N ×R
N ×R

K −→ R
N is called the reservoir map. The

vector x(t) is referred to as the neuron layer at time t
and each of its components xi(t) are its neuron values.

The vector θ ∈ R
K contains the set of parameters that the

reservoir map depends on. The vector I(t) ∈ R
N is the

input forcing of the reservoir that is constructed out of the

input signal {z(t)}t∈Z, z(t) ∈ R, by using an input mask
c ∈ R

N and by setting I(t) := cz(t).

A given task is assigned to the RC by fixing a teaching

signal {y(t)}t∈Z and by minimizing the mean square error

committed at the time of reproducing it with an affine combi-

nation of the reservoir output x(t) of the form W�x(t)+a,

with a ∈ R and W ∈ R
N . The optimal pair (Wout, aout) is

referred to as the readout layer and is obtained by solving

the ridge (or Tikhonov) regularized regression problem

(Wout, aout) := argmin
W∈RN ,a∈R

(
E
[(
W�x(t) + a− y(t)

)2]

+ λ ‖W‖2
)
, λ ∈ R, (2)

whose solution is given by

Wout =(Γ(0) + λIN )
−1Cov(y(t),x(t)), (3)

aout =E [y(t)]−W�
outμx. (4)

In this expression, μx := E [x(t)] is the expectation of the

reservoir output and

Γ(0) := E
[
(x(t)− μx) (x(t)− μx)

�
]

is the lag-zero autocovariance exhibited by the reservoir

output. We show later on that if the input signal is strictly

stationary then the two moments μx and Γ(0) are time-

independent. The mean square error committed by the

reservoir when using the optimal readout is:

E
[(
W�

out · x(t) + aout − y(t)
)2]

=W�
outΓ(0)Wout

+ var (y(t))− 2W�
outCov(y(t),x(t)) = var (y(t))

− Cov(y(t),x(t))�(Γ(0) + λIN )
−1(Γ(0) + 2λIN )

× (Γ(0) + λIN )
−1Cov(y(t),x(t)). (5)

The reservoir capacity C(θ, c, λ) is defined as one minus

the mean square error that we just computed, normalized

with the variance of the teaching signal, that is,

C(θ, c, λ) :=
(
Cov(y(t),x(t))�(Γ(0) + λIN )

−1(Γ(0)

+ 2λIN )(Γ(0) + λIN )
−1Cov(y(t),x(t))

)
/var (y(t)) .

(6)

We emphasize that this capacity is a natural generalization to

the context of non-independent stationary input signals of the

notion introduced in [8], [9], [10], [11], [12]. Additionally,

we point out that C(θ, c, λ) depends on, apart from the

reservoir parameters θ, the input mask c, and the regulariza-

tion constant λ, also on the task determined by the teaching

signal {y(t)}t∈Z. It is clear that 0 ≤ C(θ, c, λ) ≤ 1.

III. THE RESERVOIR MODEL

The capacities for a reservoir of the form (1) are in general

very difficult to compute analytically. In [14] we introduced

an approximate model for TDRs that made possible an

analytic estimation of their capacities under a strong inde-

pendence hypothesis in the input signal; this condition was

already present in the original definitions of this notion [8],

[9], [10], [11], [12]. We now extend that construction to

more general RCs driven by strictly stationary input signals.

Additional details and proofs can be found in [18].

Definition 3.1: The time series {z(t)}t∈Z is said to

be strictly stationary if the joint distributions of

(z(t1), . . . , z(tk))
�

and (z(t1 + h), . . . , z(tk + h))
�

are the

same for all k ∈ N and for all t1, . . . , tk, h ∈ Z.

Definition 3.2: Given a time series {z(t)}t∈Z, r1, . . . , rk,

k ∈ N and t, h2, . . . , hk ∈ Z we define the corresponding

higher order automoment μr1,...,rk
z (t, h2, . . . , hk) as

μr1,...,rk
z (t, h2, . . . , hk)

:= E [z(t)r1z(t+ h2)
r2 · · · z(t+ hk)

rk ] . (7)

together with the convention μr1
z (t) = E [z(t)r1)].

Proposition 3.3: Let {z(t)}t∈Z be a stochastic time series

whose higher order automoments exist. If {z(t)}t∈Z is

strictly stationary then its higher order automoments are

time-independent. In that case, we replace the notation in

(7) by

μr1,...,rk
z (h2, . . . , hk)

:= E [z(t)r1z(t+ h2)
r2 · · · z(t+ hk)

rk ] , (8)

for any t ∈ Z.

The approximate model of the RC in (1) is obtained, as

in [14], by partially linearizing F with respect to the self-

delay at a stable fixed point x0 ∈ R
N of the autonomous

system associated to (1). The point x0 ∈ R
N is chosen so

that F (x0,0N ,θ) = x0, θ ∈ R
K , and for which the spectral

radius ρ (A(x0,θ)) < 1, with A(x0,θ) := DxF (x0,0N ,θ),
in order to ensure stability. In [14] we provided both

theoretical and empirical evidence that suggests that optimal

497497497497



reservoir performance can be achieved when working in a

statistically stationary regime around a stable equilibrium.

The stability of the point x0 implies, in passing, that the

reservoir states x(t) remain close to x0, and hence justifies

the approximate reservoir model:

x(t) = x0 +A(x0,θ)(x(t− 1)− x0) + ε(t), (9)

where ε(t) =
(
q1R (z(t), c) , . . . , q

N
R (z(t), c)

)�
, with

qjR (·, c) a polynomial of degree R ∈ N whose

monomial of order i has as coefficient the value
1

i!
D

(i)
I Fj(x0,0N ,θ) (c⊗ · · · ⊗ c)︸ ︷︷ ︸

i factors

with Fj is the j-th com-

ponent of the map F := (F1, . . . , FN ) in (1). The strict

stationarity of {z(t)}t∈Z implies that of {ε(t)}t∈Z. In par-

ticular,

με := E [ε(t)] =
((
q1R (x, c)

)
(μ·z) , · · · ,

(
qNR (x, c)

)
(μ·z)

)�
,

(10)

where the symbol
(
qiR (x, c)

)
(μ·z) stands for the evaluation

of the polynomial qNR (x, c) according to the following

convention: any monomial of the form arx
r is replaced by

arμ
r
z . A similar convention can be used to write down the

autocovariance Γε(h), h ∈ Z of {ε(t)}t∈Z. Indeed, for any

i, j ∈ {1, . . . , N}:

(Γε(h))i,j = E
[
εi(t)εj(t+ h)

]− μi
εμ

j
ε

=
(
qiR (x, c) • qjR (y, c)

)
(μ·,·z (h))− μi

εμ
j
ε, (11)

where the symbol • denotes polynomial multiplication and

the first summand stands for the evaluation of the bivariate

polynomial qiR (x, c) • qjR (y, c) according to the following

convention: any monomial of the form ar,sx
rys is replaced

by ar,sμ
r,s
z (h), with μr,s

z the second order automoment of

{z(t)}t∈Z.

The following proposition shows that the strict stationarity

of the input signal implies the second order stationarity of

the output {x(t)}t∈Z of the approximate reservoir (9).

Proposition 3.4: Let {x(t)}t∈Z be the output of the

reservoir model (9). Suppose that the spectral radius

ρ (A(x0,θ)) < 1 and that the input signal {z(t)}t∈Z is

strictly stationary and has finite automoments up to order 2R
(R is the order of the expansion that defines the reservoir

model (9)). Under those hypotheses, the reservoir output

{x(t)}t∈Z is second order stationary with the first two

moments given by:

μx = x0 + (IN −A(x0,θ))
−1

με, and

Γ(h) =

∞∑
j,k=0

AjΓε (k − j − h)
(
Ak

)�
, h ∈ Z, (12)

where με and Γε provided by (10) and (11), respectively.

Under these hypotheses, the recursion (9) that determines

the reservoir model can be rewritten as

(x(t)− μx) = A(x0,θ)(x(t− 1)− μx) + (ε(t)− με) ,
(13)

that has as unique stationary solution

x(t) = μx +
∞∑
j=0

A(x0,θ)
j (ε(t− j)− με) . (14)

IV. RESERVOIR CAPACITY ESTIMATIONS FOR SIGNAL

FORECASTING, RECONSTRUCTION, AND FILTERING

We now use the reservoir model introduced in the previous

section in order to provide capacity estimates for different

information processing tasks. All along this section, we

assume that the input signal {z(t)}t∈Z is strictly stationary

and has finite automoments up to order 2R so that we can

use the results contained in Proposition 3.4. We refer the

reader to [18] for additional details and other examples.

Let {z(t)}t∈Z and {y(t)}t∈Z be two one-dimensional

stochastic time series that will be called in what follows

the input and teaching signals, respectively. The goal of any

machine learning based signal treatment strategy consists

of using finite size realizations zT := {z(1), . . . , z(T )}
and yT := {y(1), . . . , y(T )} of {z(t)}t∈Z and {y(t)}t∈Z,

respectively, in order to train a device that is capable of

reproducing out-of-sample realizations y′T ′ of the teaching

signal out of a corresponding realization of the input signal

x′T ′ . The pairs (zT ,yT ) and (z′T ′ ,y′T ′) are referred to as

training and testing samples, respectively.

A. Forecasting and reconstruction

We define a (f, h)-lag forecasting/reconstruction

task as a function H : R
f+h+1 → R that is

used to generate a one-dimensional signal

y(t) = H (z(t+ f), . . . , z(t), . . . , z(t− h)) that depends

on the value of the input signal f lags into the future

(forecasting part) and h lags into the past (reconstruction

part).

The linear case: Consider the linear forecast-

ing/reconstruction task H : Rf+h+1 → R determined by

the assignment

zf,h(t) = (z(t+ f), . . . , z(t), . . . , z(t− h)) ∈ R
f+h+1

�−→ L�zf,h(t),

with L ∈ R
f+h+1. The teaching signal is constructed by

setting y(t) := L�zf,h(t). We now estimate the memory

capacity CH(θ, c, λ) associated to the task H and exhibited

by the reservoir model (13). Notice that the evaluation of the

capacity requires the computation of the lag-zero autocovari-

ance Γ(0) of the reservoir output in terms of the reservoir

parameters, as well as var (y(t)) and Cov(y(t),x(t)). The

expression for Γ(0) is explicitly provided by (12); regarding

var (y(t)) and Cov(y(t),x(t)) we have:
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• var(y(t)) = L�(Γz − μ2
zif+h+1i

�
f+h+1)L, with Γz ∈

Sf+h+1 defined by Γz
i,j = μ1,1

z (i − j), with i, j ∈
{1, . . . , f +h+1}, and μ1,1

z the second order automo-

ment of the input signal.

• Using the unique stationary solution of the reservoir

model in (13) it is possible to show that

Cov(y(t),x(t)) =

f+h+1∑
j=1

∞∑
k=0

LjA(x0,θ)
k

×

⎡
⎢⎣
⎛
⎜⎝
(
x • q1R (y, c)

) (
μ1,·
z (f + k + 1− j)

)
...(

x • qNR (y, c)
) (

μ1,·
z (f + k + 1− j)

)
⎞
⎟⎠− μzμε

⎤
⎥⎦ ,

where this expression has been written using the same

convention as in (11).

The quadratic case: Consider the quadratic forecast-

ing/reconstruction task H : Rf+h+1 → R defined by the as-

signment zf,h(t) −→ zf,h(t)�Qzf,h(t), with Q ∈ Sf+h+1.

We then define the teaching signal

y(t) := H
(
zf,h(t)

)
=

f+h+1∑
i,j=1

Qi,jz(t+f+1−i)z(t+f+1−j).
(15)

This implies that

μy := E [y(t)] =

f+h+1∑
i,j=1

Qi,jμ
1,1
z (i− j). (16)

At the same time

y(t)2 =

f+h+1∑
i,j,k,l=1

Qi,jQk,lz(t+ f +1− i)z(t+ f +1− j)

× z(t+ f + 1− k)z(t+ f + 1− l),

and hence

E
[
y(t)2

]
=

f+h+1∑
i,j,k,l=1

Qi,jQk,lμ
1,1,1,1
z (i−j, i−k, i−l). (17)

Consequently, by (16) and (17),

var (y(t)) =

f+h+1∑
i,j,k,l=1

Qi,jQk,lμ
1,1,1,1
z (i− j, i− k, i− l)

−
⎛
⎝f+h+1∑

i,j=1

Qi,jμ
1,1
z (i− j)

⎞
⎠

2

.

In order to compute Cov (y(t),x(t)), we use again the

representation (13) and hence

Cov (y(t),x(t)) = Cov (y(t),x(t)− μx) =
∞∑
k=0

A(x0,θ)
k

× Cov (y(t),ρ(t− k)) =
∞∑
k=0

A(x0,θ)
k

× [E [y(t)ε(t− k)]− μyμε] =
∞∑
k=0

f+h+1∑
i,j=1

A(x0,θ)
kQi,j

× E [z(t+ f + 1− i)z(t+ f + 1− j)ε(t− k)]

− μy

∞∑
k=0

A(x0,θ)
kμε =

∞∑
k=0

f+h+1∑
i,j=1

Qi,jA(x0,θ)
k

×

⎛
⎜⎝
(
x • y • q1R (z, c)

) (
μ1,1,·
z (i− j, i− k − f − 1)

)
...(

x • y • qNR (z, c)
) (

μ1,1,·
z (i− j, i− k − f − 1)

)
⎞
⎟⎠

− μy

∞∑
k=0

A(x0,θ)
kμε.

B. Filtering of stochastic costationary signals

This case is a generalization of the previous one in which

the input and teaching signal exhibit statistical dependence,

even though they do not necessarily have a deterministic

functional link. This statistical relation is used by the RC in

order to construct a nonparametric estimation of the condi-

tional expectation E [y(t) |Ft ], where Ft is the information

set generated by the input signal up to time t, that is,

Ft = σ (z(t), z(t− 1), . . . ). This conditional expectation

minimizes the mean square error committed by the RC at

the time of reproducing the teaching signal.

Definition 4.1: Let {z(t)}t∈Z and {y(t)}t∈Z be two one-

dimensional stochastic time series. Given r ∈ N and h ∈ Z

we define the higher order comoment as

μr
y,z(t, h) := E [y(t)z(t+ h)r] . (18)

If the higher-order comoments up to order r exist and are

time-independent, we say that {y(t)}t∈Z and {z(t)}t∈Z are

rth-order costationary and we note

μr
y,z(h) := E [y(t)z(t+ h)r] , for any t ∈ Z. (19)

Suppose now that {z(t)}t∈Z is the input of the RC and

{y(t)}t∈Z is a teaching signal defining a specific filtering

task. As we did all along this section, we assume that the

input signal is strictly stationary and has finite automoments

up to order 2R; additionally we suppose that {z(t)}t∈Z and

{y(t)}t∈Z are costationary of order R.

With these assumptions, we can explicitly spell out the

performance of the RC in the filtering task by noting, first,

that var(y(t)) can be estimated out of the teaching signal
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and second, that by (14):

Cov (y(t),x(t)) = Cov (y(t),x(t)− μx)

=
∞∑
j=0

A(x0,θ)
jCov (y(t), ε(t− j)− με)

=
∞∑
j=0

A(x0,θ)
jCov (y(t), ε(t− j))

=

∞∑
j=0

A(x0,θ)
j

⎡
⎢⎣
⎛
⎜⎝
(
x • q1R (u, c)

) (
μ·y,z(−j)

)
...(

x • qNR (u, c)
) (

μ·y,z(−j)
)
⎞
⎟⎠− μzμε

⎤
⎥⎦ ,

where the expression
(
x • qiR (u, c)

) (
μ·y,z(−j)

)
stands for

the evaluation of the polynomial x • qiR (u, c) on the vari-

ables x and u, according to the following convention: each

monomial of the form axur is replaced by aμr
y,z(−j).

We emphasize that given the input and teaching signals

{z(t)}t∈Z and {y(t)}t∈Z, respectively, the higher order

comoments can be estimated out of the training sample and

inserted in the equation above. These elements provide an

estimate of the RC capacity for any value of its parameters

θ and the input mask c.

V. THE FADING MEMORY AND THE SEPARATION

PROPERTIES

The fading memory and the separation properties have

been identified in the context of reservoir computing to be

in relation with good information processing performances

(see [13], [7] and references therein). The goal of the

following paragraphs is showing that the reservoir model (9)

for the discrete-time reservoir computer (1) exhibits these

features under reasonable assumptions on the reservoir map.

Definition 5.1: Consider the discrete-time reservoir map

(1). We say that the reservoir map (1) satisfies the uniform
fading memory property (UFMP) whenever for any ε > 0
there exist δε > 0 and hε ∈ N such that if for any two input

signals {z(t)}t∈Z, {z′(t)}t∈Z the relation |z(s)−z′(s)| < δε
holds for all s ∈ [t− hε, t], t ∈ Z, then the corresponding

outputs x(t), x′(t) are such that ||x(t) − x′(t)|| < ε. The

values δε > 0 and hε ∈ N corresponding to a given ε > 0
are the same for any t ∈ Z.

We say that (1) satisfies the separation property (SP)
if for two input signals {z(t)}t∈Z, {z′(t)}t∈Z that differ

only at some time point s ∈ Z, that is, z(s) �= z′(s),
the corresponding outputs satisfy that x(t) �= x′(t) for any

t ≥ s.

The proof of the following two results can be found

in [18].

Theorem 5.2: Consider the reservoir model (9) driven by

the real valued and non-necessarily stationary input signal

{z(t)}t∈Z.

(i) Let c ∈ R
N be an input mask and I(t) := cz(t) the

corresponding input forcing. Let

FR
I (I(t),x0,θ) :=

R∑
i=1

1

i!
D

(i)
I F (x0,0N ,θ)

i factors︷ ︸︸ ︷
I(t)⊗ · · · ⊗ I(t)

be the Rth-order Taylor series expansion of the reservoir
map F at the point (x0,0N ,θ) with respect to the input
forcing I(t). Assume that one of the following conditions
holds:

(a) The map FR
I (·,x0,θ) : R

N → R
N is injective.

(b) The input signal is bounded, that is, there exists

k ∈ R
+ such that |z(t)| < k, for all t ∈ Z,

and the map FR
I is injective in the set B ={

I ∈ R
N | ‖I‖ < ‖c‖k}.

If additionally, the linear map A(x0,θ) :=
DxF (x0,0N ,θ) : RN → R

N has no zero eigenvalues, then
the reservoir model satisfies the separation property.

(ii) Suppose that the input signal {z(t)}t∈Z is strictly sta-
tionary with finite automoments up to order 2R and that it
is bounded, that is, there exists k ∈ R

+ such that |z(t)| < k
for all t ∈ Z. If additionally the linear map A(x0,θ) is such
that ‖A(x0,θ)‖ < 1, with ‖ · ‖ some matrix norm induced
from R

N , then the reservoir model (9) satisfies the uniform
fading memory property.

This result can be easily extended to multidimensional
input signals, that is, {z(t)}t∈Z, z(t) ∈ R

n. In that case
(see [15] for the details) the RC is constructed by using

an input mask c ∈ MN,n that takes care not only of the
temporal, but also of the dimensional multiplexing by setting

I(t) := cz(t). The only additional hypothesis needed in that
situation is that the rank of c has to equal n in order to
conclude part (ii) of the theorem.

The following result contains a statement analogous to
that of Theorem 5.2 in the particular case of the time-

delay reservoirs (see [14]). In that situation, some hypotheses

are either automatically satisfied or can be formulated in a

simplified manner.

Corollary 5.3: Consider a time-delay reservoir of the type
considered in [14] with nonlinear kernel f : R×R×R

K →
R, parameters θ ∈ R

K , and a non-necessarily stationary
input signal {z(t)}t∈Z, z(t) ∈ R.
(i) Let c ∈ R

N be an input mask and I(t) := cz(t)
the corresponding input forcing. Let fR

I (I(t), x0,θ) :=∑
R
i=1

1

i!
(∂

(i)
I f)(x0, 0,θ)I(t)

i be the Rth-order Taylor series

expansion of the kernel map f at the point (x0, 0,θ) with
respect to the input forcing I(t). Assume that one of the
following conditions holds:

(a) The map fR
I (·, x0,θ) : R→ R is injective;

(b) The input signal is bounded, that is, there exists

k ∈ R
+ such that |z(t)| < k, for all t ∈ Z, and

the map fR
I (·, x0,θ) is injective in the set B =

{I ∈ R | |I| < ‖C‖k}.
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Then the corresponding TDR model satisfies the (SP).
(ii) Suppose that the input signal {z(t)}t∈Z is strictly sta-

tionary with finite automoments up to order 2R and that it

is bounded, that is, there exists k ∈ R
+ such that |z(t)| < k,

for all t ∈ Z. If the partial derivative ∂xf(x0, 0,θ) of the

nonlinear kernel f evaluated at the point (x0, 0,θ) satisfies

the condition |∂xf(x0, 0,θ)| < 1, then the TDR model

satisfies the (UFMP).

VI. EXAMPLE: FILTERING OF AUTOREGRESSIVE

STOCHASTIC VOLATILITIES

In this example we consider the autoregressive stochastic

volatility (ARSV) model [19] determined by the linear state-

space prescription{
z(t) = r + σ(t)ζ(t), {ζ(t)}t∈Z ∼ IID(0, 1)
b(t) = λ+ αb(t− 1) + w(t), {w(t)}t∈Z ∼ IID(0, σ2

w)

(20)

where b(t) := log(σ(t)2), λ is a real parameter, and α ∈
(−1, 1). We will additionally assume that the innovations

{ζ(t)}t∈Z and {w(t)}t∈Z are independent. It is easy to prove

that the unique stationary process {z(t)}t∈Z induced by (20)

and available in the presence of the constraint α ∈ (−1, 1) is

a white noise (the returns have no autocorrelation) with finite

moments of arbitrary order. Moreover, the unconditional

variance σ2
b of the stationary process {b(t)} is given by

σ2
b =

σ2
w

1− α2
,

and if the innovations {ζ(t)} and {w(t)} are Gaussian, then

the unconditional variance and kurtosis of the process {y(t)}
are given by

var(z(t)) = E[σ(t)2] = exp

[
λ

1− α
+
1

2
σ2
b

]
,

and

kurtosis (z(t)) = 3 exp
(
σ2
b

)
.

Moreover, it can be shown [19] that whenever σ2
b is small

and/or α is close to one then the autocorrelation γ(h) of the

squared returns at lag h can be approximated by

γ(h) � exp(σ2
b )− 1

3 exp(σ2
b )− 1

αh.

The volatility process {σ(t)}t∈Z is a non-observable, non-

predictable stochastic latent variable that cannot be written

as a function of previous realizations of the observable

variable z(t) and the volatilities σ(t). Many procedures have

been developed over the years to go around this difficulty

whose solution is needed, in particular, to estimate the

model parameters. In this section we will focus in only

two them that are profusely used in the literature. First,

the specific form of the prescription (20) corresponds to

a state-space model in which the observation equation is

the one that yields {z(t)}t∈Z and the state equation rules

the time evolution of b(t) := log(σ(t)2). This observation

makes appropriate the use of the Kalman filter [20] to obtain

estimations of the conditional log-variances b(t) based on

the observed values z(t). The other method that we will use

as a benchmark is the hierarchical-likelihood method [21],

[22], [23] (abbreviated in what follows as h-likelihood)

that incorporates the unobserved volatilities as an unknown

variable at the time of writing a likelihood that is optimized

and that takes into account the observed time series values

z(t).

In the RC context, the problem of estimating the unob-

served volatility σ(t) out of the observed values of z(t) up

to time t, can be easily encoded as a filtering problemfor

which the RC performance was studied in Section IV-B by

using the reservoir model. Indeed, it suffices to take z(t) as

input signal and as teaching signal y(t) the functional form

of the volatility that we are interested in. Both the Kalman

filter and the h-likelihood methods are designed to produced

optimal (linear in the case of Kalman) estimations of the the

log-variance log(σ(t)2), which is a limitation to which RC

is not exposed.

In the paragraphs that follow we carry out an empirical

exercise in this context in order to compare the performance

of the RC with that of Kalman and h-likelihood, and also to

evaluate the accuracy of the capacity formulas introduced in

Section IV and based on the reservoir model (9) at the time

of estimating the performance of the actual RC.

We proceed by using a time-delay reservoir of the type

considered in [14] constructed with the so-called Ikeda

kernel map given by the expression:

f(x, I,θ) = η sin2 (x+ γI + φ) , θ := (η, γ, φ) ∈ R
3.
(21)

The architecture of the reservoir chosen contains 40 neurons

and an input mask c ∈ R
N that was randomly constructed

with values uniformly distributed in the interval [−1, 1].
We present to this TDR the filtering tasks consisting on

estimating four different functions of the volatility σ(t) gen-

erated by an ARSV model with parameters r = 3.9 · 10−4,

σw = 0.675, λ = −0.821, and α = 0.9. The four different

teaching signals used are y1(t) := σ(t), y2(t) := σ(t)2,

y3(t) := log(σ(t)), and y4(t) := log(σ(t)2). Given a fixed

input mask c, the reservoir parameters θ are optimized with

respect to each of these four filtering tasks. In this case, the

optimal parameters were the same for the four cases, namely,

γ = 2.866, φ = 1.124, η = 0.461, and d = 0.839; we recall

that d := τ/N is the separation between neurons. Table I

presents the performances (in terms of the normalized mean

square error (NMSE)) exhibited by the TDR in the exe-

cution of the four filtering tasks and compares them with

those attained using the Kalman filter and the h-likelihood

approaches. The figures in the table show that these two

benchmarks outperform the RC at the time of filtering the

functions of the volatility (logarithm) that they have been
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designed for but when it comes to providing the values of

the actual instantaneous volatility or variance, it is the RC

that performs the best.

Table I
PERFORMANCES (IN TERMS OF THE NORMALIZED MEAN SQUARE

ERROR (NMSE)) EXHIBITED BY THE TDR IN THE EXECUTION OF FOUR

VOLATILITY FILTERING TASKS COMPARED WITH THOSE ATTAINED

USING THE KALMAN FILTER AND THE H-LIKELIHOOD APPROACHES.

Stochastic volatility filtering performance (NMSE)

Teaching signal proposed/Task solved

Instantaneous Instantaneous log of Instantaneous log of Instantaneous
volatility variance volatility variance

Filtering Method h-likelihood 0.476 0.730 0.411 0.411
Kalman 0.536 0.812 0.429 0.429

Reservoir Method Reservoir computer (TDR) 0.437 0.594 0.655 0.655
Reservoir model 0.453 0.661 0.652 0.601

We finally evaluate in the context of this filtering task the

accuracy of the capacity formulas introduced in Section IV.

Figure 1 depicts the error surfaces associated to the filtering

of the instantaneous volatility σ(t) of the same ARSV data

generating process that we considered in the construction of

Table I. The left panel has been computed using Monte Carlo

simulations in order to empirically evaluate the filtering

error of the Ikeda TDR as a function of the parameter η
in (21) and of the distance between neurons. The right panel

was obtained by evaluating the capacity formula introduced

in Section II and based on the reservoir model (9) with

the help of the elements introduced in Section IV-B and

a nonlinearity of order R = 8. The two surfaces clearly

resemble each other and, more importantly, exhibit their

minima at virtually the same parameter values. This proves

that, as it was already shown in [14], [15] for independent

signals, that the theoretical model can be efficiently used to

determine the optimal reservoir architecture in the presence

of strictly stationary inputs.

Figure 1. Error surfaces associated to the filtering of the instantaneous
volatility σ(t) an ARSV data generating process. The left panel has been
computed using Monte Carlo simulations in order to empirically evaluate
the filtering error of the Ikeda TDR as a function of η in (21) and of the
distance between neurons. The right panel was obtained by evaluating the
capacity formula based on the reservoir model (9) with a nonlinearity of
order R = 8. The two surfaces have minima at virtually the same parameter
values.
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