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Abstract—The aim of this presentation is to show how
various ideas coming from the nonlinear stability theory
of functional differential systems, stochastic modeling, and
machine learning, can be put together in order to create an
approximating model that explains the working mechanisms
behind a certain type of reservoir computers. Reservoir com-
puting is a recently introduced brain-inspired machine learning
paradigm capable of excellent performances in the processing
of empirical data. We focus on time-delay based reservoir
computers that have been physically implemented using optical
and electronic systems and have shown unprecedented data
processing rates. Reservoir computing is well-known for the
ease of the associated training scheme but also for the problem-
atic sensitivity of its performance to architecture parameters.
The reservoir design problem is addressed, which remains
the biggest challenge in the applicability of this information
processing scheme. Our results use the information available
regarding the optimal reservoir working regimes in order to
construct a functional link between the reservoir parameters
and its performance. This function is used to explore various
properties of the device and to choose the optimal reservoir
architecture, thus replacing the tedious and time consuming
parameter scannings used so far in the literature.

Keywords-Reservoir computing; echo state networks; neural
computing; time-delay reservoir; memory capacity; architec-
ture optimization.

I. INTRODUCTION

Reservoir computing (RC) [1], [2], [3], [4] is a new

brain-inspired machine learning paradigm that has shown

much potential in overcoming the physical limitations of

the Turing or von Neumann machine methods implemented

in most computational systems. In this talk we discuss a

model introduced in [5] for a particular implementation

of this paradigm suggested by the intrinsic information

processing abilities of dynamical systems. More specifically,

we will focus on a RC realization based on the sampling

of the solution of a time-delay differential equation [6],

[7]. We refer to this combination as time-delay reservoirs

(TDRs). Physical implementations of this scheme carried

out with dedicated hardware are already available and have

shown excellent performances in the processing of empirical

data: spoken digit recognition [8], [9], [10], [11], [12], the

NARMA model identification task [13], [6], continuation of

chaotic time series, and volatility forecasting [14]. A recent

example that shows the potential of this combination are the

results in [12] where an optoelectronic implementation of a

TDR is capable of achieving the lowest documented error

in the speech recognition task at unprecedented speed in an

experiment design in which digit and speaker recognition

are carried out in parallel.

A major advantage of RC is the linearity of its training

scheme. This choice makes its implementation easy when

compared to more traditional machine learning approaches

like recursive neural networks, which usually require the

solution of convoluted and sometimes ill-defined optimiza-

tion problems. In exchange, as it can be seen in most of

the references quoted above, the system performance is not

robust with respect to the choice of the parameter values θ
of the nonlinear kernel used to construct the RC (see below).

This observation makes the kernel parameter optimization a

very important step in the RC design and has motivated the

introduction of alternative parallel-based architectures [15],

[14] to tackle this difficulty.

The main contribution that we will here discuss is an

approximated model that, to our knowledge, provides the

first rigorous analytical description of the delay-based RC

performance. This powerful theoretical tool can be used to

systematically study the delay-based RC properties and to

replace the trial and error approach in the choice of architec-

ture parameters by well structured optimization problems.

II. TIME-DELAY RESERVOIRS (TDR)

TDRs are based on the interaction of the time-dependent

input signal z(t) ∈ R that we are interested in, with the

solution space of a non-autonomous time-delay differential

equation of the form

ẋ(t) = −x(t) + f(x(t− τ), I(t),θ), (1)

where f is a nonlinear kernel that depends on the K
parameters in the vector θ ∈ R

K , τ > 0 is the delay,

x(t) ∈ R, and I(t) ∈ R is obtained using a temporal

multiplexing over the delay period of the input signal z(t)
that we explain later on. The choice of nonlinear kernel

is determined by the intended physical implementation of

the computing system; we focus on two parametric sets of

kernels that have already been explored in the literature,
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namely, the Mackey-Glass [16] and the Ikeda [17] families.

These kernels were used for reservoir computing purposes

in the RC electronic and optic realizations in [9] and [10],

respectively.

In order to visualize the TDR construction using a neural

networks approach it is convenient, as in [9], to consider the

Euler time-discretization of (1) with integration step d :=
τ/N , namely,

x(t)− x(t− d)

d
= −x(t) + f(x(t− τ), I(t),θ). (2)

The design starts with the choice of a number N ∈ N of

virtual neurons and of an adapted input mask c ∈ R
N . Next,

the input signal z(t) at a given time t is multiplexed over

the delay period by setting I(t) := cz(t) ∈ R
N . We then

organize it, as well as the solutions of (2), in neuron layers

x(t) parametrized by a discretized time t ∈ Z by setting

xi(t) := x(tτ − (N − i)d), Ii(t) := I(tτ − (N − i)d),

i ∈ {1, . . . , N}, t ∈ Z, where xi(t) and Ii(t) stand for the

ith-components of the vectors x(t) and I(t), respectively,

with t ∈ Z. With this convention, the solutions of (2) are

described by the following recursive relation:

xi(t) := e−ξxi−1(t) + (1− e−ξ)f(xi(t− 1), Ii(t),θ), (3)

with x0(t) := xN (t − 1), and ξ := log(1 + d). These

recursions uniquely determine a smooth map F : RN×RN×
R

K → R
N that specifies the neuron values as a recursion

on the neuron layers via an expression of the form

x(t) = F (x(t− 1), I(t),θ), (4)

where F is constructed out of the nonlinear kernel map f
that depends on the K parameters in the vector θ; F is

referred to as the reservoir map. The construction of the TDR

computer is finalized by connecting the reservoir output to a

linear readout Wout ∈ R
N that is calibrated using a training

sample by minimizing the associated task mean square error

via a (ridge regularized) linear regression.

III. OPTIMAL PERFORMANCE: STABILITY AND

UNIMODALITY

The performance of the TDR for a given task is much

dependent on the value of the kernel parameters θ and,

in some cases, on the entries of the input mask c. When

comparing RC to standard neural networks and thinking

of it as a machine learning paradigm, the RC training

phase can be assimilated to the determination of both the

linear readout Wout (straightforward in this case using a

linear regression) and the optimal parameters θ. Unlike the

situation encountered in the neural networks context for

which efficient training algorithms have been developed over

the years, the optimal parameters θ are usually determined

in the RC context by trial and error or using computationally

costly systematic scannings.

In [5] (see further extensions in [18], [19]) we con-

structed an approximate model that we used to to establish

a functional link between the RC performance and the

parameters θ and the input mask values c that is based

on the observation that the optimal RC performance is

always obtained when the TDR is working in a stable

unimodal regime, that is, the reservoir is initialized at a

stable equilibrium of the autonomous system (I(t) = 0)

associated to (1) and the mean and variance of the input

signal I(t) are designed using the input mask c so that

the reservoir output remains around it and does not visit

other stable equilibria or dynamical elements (see [5] for

empirical and theoretical arguments in this direction). In

the context of recent successful physical realizations of RC,

experimental parameters are systematically chosen so that

these conditions are satisfied (for example in [9], [10] these

conditions are ensured via a proper tuning of the gain of

the delayed feedback function. This approach differs from

the one in [12], where the conditions are met by choosing

a laser injection current strictly smaller but close to the

lasing threshold, as well as by using a moderate feedback,

which prevents eventual self sustained external cavity mode

oscillations. An additional important observation suggested

by all these experimental setups is the need for a nonlinearity

at the level of the input injection. In [9], [10] this feature is

obtained using a strong enough input signal amplitude and

via the transformation associated to the nonlinear delayed

feedback. In [12] the delayed feedback is linear but an

external Mach-Zehnder modulator is used that implicitly

provides a nonlinear transformation of the input signal as

it is optically seeded through the nonlinear electro-optic

modulation transfer function of the Mach-Zehnder.

Consider an equilibrium x0 ∈ R of the continuous time

model (1). It can be shown using a Lyapunov-Krasovskiy-

type analysis (see [5]) that the asymptotic stability of x0 is

guaranteed as long as |∂xf(x0, 0,θ)| < 1.

IV. THE APPROXIMATING MODEL AND THE NONLINEAR

MEMORY CAPACITY OF THE TDR

As optimal operation is attained when the TDR functions

in a unimodal fashion around an asymptotically stable steady

state, we can approximate it by its partial linearization with

respect to the delayed self feedback term at that point

and keeping the nonlinearity for the input injection. For

statistically independent input signals of the type used to

compute nonlinear memory capacities of the type introduced

in [20], this approximation allows us to visualize the TDR

as a N -dimensional (N is the number of neurons) vector

autoregressive stochastic process of order one (we denote it

as VAR(1)) for which the value of the associated nonlinear

memory capacities can be explicitly computed. The quality

of this approximation at the time of evaluating the memory

capacities of the original system is excellent and the resulting

function can be hence used for RC optimization purposes
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regarding the nonlinear kernel parameter values θ and the

input mask c.

Consider a stable equilibrium x0 ∈ R of the autonomous

system associated to (1) or, equivalently, a stable fixed point

of (4) of the form x0 := (x0, . . . , x0)
� ∈ R

N . If we

approximate (4) by its partial linearization at x0 with respect

to the delayed self feedback and by the R-order Taylor

series expansion of the functional that describes the signal

injection, we obtain an expression of the form:

x(t) = F (x0,0N ,θ)+A(x0,θ)(x(t−1)−x0)+ε(t), (5)

where A(x0,θ) := DxF (x0,0N ,θ) is the linear connectiv-

ity matrix and ε(t) is given by:

ε(t) = (1− e−ξ)(qR (z(t), c1) ,

qR (z(t), c1, c2) , . . . , qR (z(t), c1, . . . , cN ))
�, (6)

with

qR (z(t), c1, . . . , cr) :=
R∑
i=1

z(t)i

i!
(∂

(i)
I f)(x0, 0,θ)

r∑
j=1

e−(r−j)ξcij , (7)

and (∂
(i)
I f)(x0, 0,θ) is the ith order partial derivative of the

nonlinear kernel f with respect to the second argument I(t),
evaluated at the point (x0, 0,θ).

If we now use as input signal z(t) independent and identi-

cally distributed random variables with mean 0 and variance

σ2
z (we denote it by {z(t)}t∈Z ∼ IID(0, σ2

z)) then the

recursion (5) makes the reservoir layer dynamics {x(t)}t∈Z
into a discrete time random process that, as we show in

what follows, is the solution of a N -dimensional vector

autoregressive model of order 1 (VAR(1)). Indeed, it is easy

to see that the assumption {z(t)}t∈Z ∼ IID(0, σ2
z) implies

that {I(t)}t∈Z ∼ IID(0N ,ΣI), with ΣI := σ2
zc
�c, and that

{ε(t)}t∈Z is a family of N -dimensional independent and

identically distributed random variables with mean με and

covariance matrix Σε given by the following expressions:

με = E [ε(t)] = (1− e−ξ)(qR (μz, c1) ,

qR (μz, c1, c2) , . . . , qR (μz, c1, . . . , cN ))
�, (8)

where the polynomial qR is the same as in (7) and where we

use the convention that the powers μi
z := E

[
z(t)i

]
, for any

i ∈ {1, . . . , R} and with E[·] denoting the mathematical ex-

pectation. Additionally, Σε := E
[
(ε(t)− με)(ε(t)− με)

�]
has entries determined by the relation:

(Σε)ij = (1−e−ξ)2((qR(·, c1, . . . , ci)·qR(·, c1, . . . , cj))(μz)

− qR(μz, c1, . . . , ci)qR(μz, c1, . . . , cj)),

where the first summand stands for the multiplication of

the polynomials qR(·, c1, . . . , ci) and qR(·, c1, . . . , cj) and

the subsequent evaluation of the resulting polynomial at μz ,

and the second one is made out of the multiplication of the

evaluation of the two polynomials.

Using these observations, we can consider (5) as the

prescription of a VAR(1) model driven by the indepen-

dent noise {ε(t)}t∈Z. If the nonlinear kernel f satisfies

the generic condition that the polynomial in u given by

det (IN −A(x0,θ)u), does not have roots in and on the

complex unit circle, then (5) has a second order stationary

solution {x(t)}t∈Z with time-independent mean given by

μx = E [x(t)]

= (IN −A(x0,θ))
−1(F (x0,0N ,θ)−A(x0,θ)x0+με)

and an also time independent autocovariance function

Γ(k) := E
[
(x(t)− μx) (x(t− k)− μx)

�
]
, k ∈ Z, recur-

sively determined the Yule-Walker equations:

vec(Γ(0)) = (IN2 −A(x0,θ)⊗A(x0,θ))
−1
vec(Σε).

The moments that we just spelled out are all that is needed

in order to characterize the memory capacities of the RC.

Figure 1 represents the normalized mean square error

(NMSE) surfaces (which amounts to one minus the capacity)

exhibited by a specific reservoir on a memory task (see

caption) when evaluated using the theoretical formula based

on the previously described approximation as well as with

Monte Carlo estimations (using 50,000 occurrences each)

of the NMSE exhibited by the discrete and continuous

time TDRs, respectively. The time-evolution of the time-

delay differential equation (continuous time model) was

simulated using a Runge-Kutta fourth-order method with

a discretization step equal to d/5. A quick inspection of

Figure 1 reveals the ability of the model to accurately

capture most of the details of the error surface and, most

importantly, the location in parameter space where optimal

performance is attained; it is very easy to visualize in this

particular example how sensitive the magnitude of the error

and the corresponding memory capacity are to the choice of

parameters and how small in size the region in parameter

space associated with acceptable operation performance may

be.
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