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1 Introduction

Empirical findings show strong evidence against several assumptions of the Black-Scholes (1973) option

valuation model. The pricing and hedging of index options have been thus extensively studied in the

context of stochastic volatility (SV) models in both discrete and continuous time.

In discrete-time settings, there are two main approaches for modeling the well documented volatility

smile/smirk. The first direction is represented by the family of Generalized Autoregressive Conditionally

Heteroskedastic (GARCH) models introduced by Engle (1982) and Bollerslev (1986), which have become

very popular due to their ability to capture several of the “stylized facts” observed in financial markets,

such as volatility clustering, fat tails, leverage effects, etc. Duan (1995) proposed a GARCH option

pricing model driven by Gaussian innovations and based on a stochastic discount factor (SDF) which

contains only a market price of equity risk. Due to its non-affine structure, there are no closed-form

solutions available for pricing European style options. An alternative approach was provided by Heston

and Nandi (2000), who introduced an affine class of Gaussian GARCH models which admit a semi-

closed form expression for the unconditional Laplace transform of the log-asset price process. In order

to improve the empirical fit of the Gaussian GARCH model, several extensions have been proposed

in the literature, by including skewed and heavy-tailed innovations (see for instance Christoffersen et

al. (2006), Chorro et al. (2012) and Badescu et al. (2008)), realized volatility measures (see, for example,

Stentoft (2008), Hansen et al. (2011), Corsi et al. (2013) and Christoffersen et al. (2014)), multi-factor

volatility dynamics (see Christoffersen et al. (2008) and Majewski et al. (2015)), variance dependent

pricing kernels (see Christoffersen et al. (2013), Bormetti et al. (2015)) or combinations of the above (see

Babaoglu et al. (2014) and Badescu et al. (2015)).

The second class consists of the Autoregressive Stochastic Volatility (ARSV) models (see Tay-

lor (1986), Harvey et al. (1994) and Taylor (2005)), which can be viewed as discretizations of continuous-

time SV models as they allow for separate driving noises for the asset-returns and the volatility/factor

processes. Even though they provide more flexible dynamics than their GARCH counterparts, the

ARSV models have not been as popular in terms of pricing and hedging financial derivatives, mainly

due to estimation related issues, and only recently they got some attention by the research community.

For example, Darolles et al. (2006) introduced the Compound Autoregressive (CAR) process which,

equipped with an exponential affine pricing kernel, has been used for derivative valuation by Bertholon

et al. (2008). The CAR framework has been extended by Khrapov and Renault (2014) who proposed an

affine bivariate model for asset returns variance which allows for leverage effect and volatility feedback.

Discrete-time affine stochastic volatility models with conditional skewness have been considered in Feu-

nou and Tédongap (2012). They propose an ARSV option pricing model based on conditional Inverse

Gaussian returns and autoregressive Gamma latent factors (see also Gourieroux and Jasiak (2006)).

They show that these option pricing models outperform existing affine GARCH and continuous time

jump diffusion models. However, the model parameters cannot be estimated using information coming
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from returns and options, since there is no existing link between the physical and the risk-neutral worlds.

The key ingredient in deriving pricing expressions in all aforementioned studies is the affine structure

of the underlying models. However, the (affine) constraints typically imposed in the conditional mean

return and volatility dynamics are somewhat restrictive. For example, Khrapov and Renault (2014)

suppose that both the conditional Laplace transform of the variance process and the bivariate Laplace

transform of the asset returns and variance process have an exponential affine form. Although this

assumption leads to explicit or semi-explicit pricing formulae, there are not many distribution candidates

for the driving noise process which satisfy the required condition. For instance, their empirical analysis

is based on just one model constructed using a conditional Gaussian distribution for the asset returns

and an autoregressive Gamma process for the latent factor. Another drawback of the affine models is

that the exponential pricing kernel associated to the pricing methodology is typically based on constant

equity and variance risk preference parameters, which is not consistent with empirical findings.

In order to address some of these issues, this paper proposes a simple one-factor non-affine ARSV

option pricing model which allows for stochastic prices of risk and leverage effect. Our construction is

based on a conditional Gaussian distribution for the factor process which drives both the conditional

mean and variance of the asset returns. As in the affine modeling literature, we use an exponential

pricing kernel which, in our situation, contains stochastic equity and factor risk premiums. Moreover,

we show that having both risk premiums constant at the same time is not consistent with our setting,

and that the market price of factor risk has a linear dependence of the factor process. We show that,

unlike in the affine setting of Khrapov and Renault (2014), the risk-neutral bivariate Laplace transform

has an exponential quadratic form in the latent factor. Moreover, our change of measure preserves the

conditional distribution of the factor process, but not that of the asset returns.

Since the unconditional risk-neutral Laplace transform of the asset returns cannot be computed

explicitly, and consequently a (spectral) generalized method of moments (GMM) estimation cannot be

obtained using standard methods, we propose a sequential estimation procedure based on the information

on both asset returns and option prices. First, using historical returns, we estimate the model parameters

following the hierarchical likelihood (h-likelihood) technique proposed by Lee and Nelder (1996) and

applied in the context of ARSV models by Lim et al. (2011). This method consists of performing a

likelihood estimation in which the unobserved factor values are treated as unknown parameters in the

optimization problem. In the second stage, the pricing kernel parameters are estimated based on the cross

section of options written on the same underlying. We conduct an extensive empirical analysis to test the

pricing and hedging performance of our model for a large panel of European put and calls options. The

benchmark used in our analysis is the Heston and Nandi (2000) affine GARCH model. The option prices

are computed based on Monte-Carlo simulation of weighted payoffs under the real-world measure, where

the weights are given by the Radon-Nikodym derivatives of the corresponding measure change. Following

the approach developed by Föllmer and Sondermann (1986), the hedging ratios are computed using the

local risk minimization with respect to this risk-neutral measure. To facilitate the empirical comparison,
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we implement a similar estimation procedure for the affine GARCH model. Our results show that the

ARSV model consistently outperforms its GARCH counterpart for almost all classes of moneyness and

maturity considered. The overall Implied Volatility Root Mean Squared Error (IVRMSE) is improved

by 24% in-sample and by 12% out-of-sample (in a weekly basis pricing exercise). Moreover, we notice

that the average improvement in IVRMSE for in-the-money calls is around 34% in-sample and 26% for

the out-of-sample weekly basis exercise. The only case when the GARCH performs slightly better than

the ARSV is for long-term out-of-money contracts. Finally, a similar finding is revealed by the hedging

exercise in the sense that the ARSV outperforms both the GARCH and the Black-Scholes model for all

maturities and moneyness groups. The overall improvement over GARCH, as measured by a Normalized

Hedging Error (NHE) indicator, is of 28%.

The paper is organized as follows. In Section 2 we introduce the underlying discrete-time stochas-

tic volatility model. The pricing kernel and risk-neutral derivations are presented in Section 3. The

estimation methodology and the numerical results are illustrated in Section 4. Section 5 concludes the

paper.

Acknowledgments: we acknowledge partial financial support of the Institut de la finance structurée et

des instruments dérivés de Montréal (IFSID) that generously sponsored this project and made possible

the collaboration between the authors of this report.

2 A non-affine one-factor autoregressive SV model

Consider a discrete time economy with the set of trading dates T = {t|t = 0, 1 . . . , T}, where T represents

the terminal time. We assume that the market consists of a bond and a stock with corresponding price

processes denoted by B := {Bt}t∈T and S := {St}t∈T , respectively. Let r be the instantaneous constant

risk free rate of return and assume that bond price dynamics is given by:

Bt = ert, t ∈ T ,

B0 = 1.

The log-return process, defined by y := {yt}t∈T = {logSt/St−1}t∈T , is governed by the following one-

factor autoregressive stochastic volatility model:

yt = µ+ λf2
t + ftεt, εt ∼ N(0, 1), (2.1)

ft = γ + φft−1 + ωt, ωt ∼ N(0, σ2
ω). (2.2)

We use the following assumptions and notations:

(1) The return process y := {yt}t∈T represents the observable quantity, while f := {ft}t∈T is an
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unobservable one-dimensional latent factor process.6

(2) The innovations ε := {εt}t∈T and ω := {ωt}t∈T are two sequences of i.i.d. Gaussian random

variables which are both serially independent and also independent of each other.

(3) The model parameter vector is denoted by θ := (µ, λ, γ, φ, σω) ∈ R5 and is assumed to satisfy

standard stationarity conditions.

(4) Let (Ω, P ) be the probability space under which the model (2.1)-(2.2) has been introduced; we

refer to P as the physical (real-world) probability measure. We denote by Ft := σ (ys, fs; s ≤ t) the

sigma-algebra generated by both the return and the factor processes, and introduce the augmented

filtration Gt := σ (ys, fs, ft; s ≤ t− 1) = Ft−1

⋃
{ft}.

We notice that yt is Ft-measurable, but it is not Gt-measurable, while, ft is measurable with respect to

both filtrations. Furthermore, the noise processes εt is independent of Gt and wt is independent of Ft−1.

From equations (2.1)-(2.2), we can conclude that the asset returns are conditionally Gaussian distributed

given Gt, that is,

yt|Gt
P∼ N

(
µ+ λf2

t , f
2
t

)
, (2.3)

while the latent factor ft has an Ft−1-conditional Gaussian distribution, namely,

ft|Ft−1

P∼ N
(
mt−1, σ

2
ω

)
, (2.4)

with mt = γ + φft.

We start by evaluating the joint cumulant generating function of the asset return and the factor

process, conditionally on the information set Ft.

Proposition 2.1 If the asset returns follow the dynamics in (2.1)-(2.2), then the Ft−1-conditional bi-

variate cumulant generating function of yt and ft under P is given by:

CP(yt,ft) (z1, z2|Ft−1) := log EP [exp (z1yt + z2ft)|Ft−1] = z1µ−
1

2
log u(z1) +

v (z2,mt−1)

u(z1)
−
m2
t−1

2σ2
ω

. (2.5)

Here, u(·) and v(·,mt) are two real-valued functions given by:

u(z1) = 1− z1 (z1 + 2λ)σ2
ω, (2.6)

v(z2,mt) =
σ2
ω

2

(
z2 +

mt

σ2
ω

)2

, (2.7)

which satisfy the conditions u(0) = 1 and v(0,mt) = m2
t/(2σ

2
ω).

Note that CP(yt,ft) (z1, z2|Ft−1) is well defined only for the values z1 such that z1 (z1 + 2λ)σ2
ω < 1 and

that, furthermore, it is not an affine function of the factor process. In fact, if we expand mt−1 in (2.5), we

6This setting can be easily extended to the multi-factor case. In order to keep the presentation simple, we restrict our
attention to the one-factor setup.
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observe that CP(yt,ft) (z1,z2|Ft−1) has a quadratic dependence with respect to ft−1. We now characterize

the univariate conditional cumulant generating functions of yt and ft. Indeed, taking z1 = 0 in (2.5), it

is easy to verify that the Ft−1-conditional cumulant generating function of the latent factor corresponds

to that of a Gaussian random variable with mean mt−1 and variance σ2
ω:

CPft (z2|Ft−1) = CP(yt,ft) (0, z2|Ft−1) = z2mt−1 +
1

2
z2

2σ
2
ω. (2.8)

Similarly, the cumulant generating function of yt conditionally on Ft−1 can be obtained from (2.5) as

follows:

CPyt (z1|Ft−1) = CP(yt,ft) (z1, 0|Ft−1) = z1µ−
1

2
log u(z1) +

m2
t−1

2σ2
ω

(
1

u(z1)
− 1

)
. (2.9)

Taking the first and the second order derivatives of CPyt (z1|Ft−1) evaluated at z1 = 0, we obtain the

conditional mean and variance of the asset returns under the physical measure:

EP [yt|Ft−1] = µ+ λ
(
m2
t−1 + σ2

ω

)
, (2.10)

VarP [yt|Ft−1] = m2
t−1 + σ2

ω + 2λ2σ2
ω

(
2m2

t−1 + σ2
ω

)
. (2.11)

The conditional covariance between the asset return process and the latent factor is given by:

CovP (yt, ft|Ft−1) = 2λmt−1σ
2
ω. (2.12)

Finally, we can compute the covariance between the asset return process and its one-step ahead condi-

tional variance given the information set Ft−1 as:

CovP
(
yt,VarP [yt|Ft−1] |Ft−1

)
= 2λφσ2

ω(1 + 4λ2σ2
ω)
[
2γmt−1 + φ

(
2m2

t−1 + σ2
ω

)]
. (2.13)

Thus, both parameters λ and φ contribute to the leverage effect.

3 Pricing kernel and risk-neutral dynamics

The choice of the risk-neutral measure plays an important role in the pricing and hedging of financial

derivatives. In this section we introduce an exponential linear pricing kernel via a bivariate conditional

Esscher transform.

First, for any t ∈ T , we define the following stochastic process N = {Nt}t∈T :

Nt = exp
(
η1tyt + η2tft − CP(yt,ft) (η1t, η2t|Ft−1)

)
. (3.1)

Here, η1t = {η1t}t∈T and η2t = {η2t}t∈T are two Ft-predictable processes representing the market prices

of equity risk and factor risk, respectively. Similar stochastic discount factors have been proposed in the
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context of discrete-time stochastic volatility models (see e.g. Khrapov and Renault (2014) and Bormetti

et al. (2015) among others), but only with constant market prices of risk. However, as showed later in

this section, it is not possible to have both η1t and η2t constants in our setting.

The pricing measure Q is introduced through the following Radon-Nikodym derivative process de-

noted by Z = {Z}t∈T :

dQ

dP

∣∣∣
FT

:= ZT =

T∏
t=1

Nt =

T∏
t=1

exp
(
η1tyt + η2tft − CP(yt,ft) (η1t, η2t|Ft−1)

)
. (3.2)

It is straightforward to check that Q is an equivalent probability measure with respect to P . Indeed, we

first notice that Zt defined in (3.2) with Z0 = 1 is an Ft-martingale:

EP [Zt|Ft−1] = Zt−1EP [Nt|Ft−1] = Zt−1EP
[
exp

(
η1tyt + η2tft − CP(yt,ft) (η1t, η2t|Ft−1)

)
|Ft−1

]
= Zt−1.

Since ZT is positive by definition and EQ[1] = EP [ZT ] = EP [Z0] = 1, it follows that Q is a well-defined

probability measure equivalent to P . In order for Q to be a risk-neutral measure, we need to impose

a constraint on the market prices of risk such that the discounted asset prices are martingales after

the change of measure. To achieve this, we characterize the conditional bivariate cumulant generating

function of the asset returns and latent factor under the pricing measure defined above.

Proposition 3.1 If the asset returns follow the dynamics in (2.1)-(2.2), then the Ft−1-conditional bi-

variate cumulant generating function of yt and ft under Q defined in (3.2) is given by:

CQ(yt,ft) (z1, z2|Ft−1) = z1µ−
1

2
log

u (z1 + η1t)

u (η1t)
+
v (z2 + η2t,mt−1)

u (z1 + η1t)
− v (η2t,mt−1)

u (η1t)
. (3.3)

Here, the functions u(·) and v(·,mt) are those defined in (2.6)-(2.7).

Using the above representation, we can re-write the martingale constraint for the discounted asset price,

EQ [exp yt|Ft−1] = exp r, as, CQ(yt,ft) (1, 0|Ft−1) = exp r. Thus, it follows that for any t ∈ T , the market

prices of risk η1t and η2t must satisfy the equation below:

µ− r − 1

2
h1 (1, η1t) + v (η2t,mt−1)h2 (1, η1t) = 0, (3.4)

where h1 (·, η1t) and h2 (·, η1t) are the two real-valued functions given by:

h1 (z1, η1t) := log
u (z1 + η1t)

u (η1t)
, (3.5)

h2 (z1, η1t) :=
1

u (z1 + η1t)
− 1

u (η1t)
. (3.6)

Unlike in the univariate conditional Esscher transform case where the market price of risk is uniquely

determined by the martingale constraint, here we have an infinite number of pairs (η1t, η2t) which solve
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(3.4). In general, we need to use option prices in order to calibrate for one of these parameters. For

example, we notice that using (3.4) we can solve for η2t as a function of η1t as follows:

η2t = −mt−1

σ2
ω

±

√
2

σωh2 (1, η1t)

(
r − µ+

1

2
h1 (1, η1t)

)
. (3.7)

If we let η1t to be a constant for any t ∈ T , this results in having an η2t which depends on ft−1. Therefore,

we cannot have both market prices of risk to be constant at the same time. In our empirical applications

we shall assume a constant factor preference parameter which will be estimated from observed option

quotes, while we let the market price of equity risk to be a stochastic process determined by (3.4). In

order to potentially identify the risk-neutral distributions of the asset return process and the latent factor

conditional on Ft, we need to evaluate the corresponding cumulant generating functions. This is carried

out in the following corollaries.

Corollary 3.1 If the asset returns follow the dynamics in (2.1)-(2.2), then the Ft−1-conditional cumu-

lant generating function of the latent factor ft under Q defined in (3.2) is given by:

CQft (z2|Ft−1) = z2
σ2
ω

u(η1t)

(
η2t +

mt−1

σ2
ω

)
+
z2

2

2

σ2
ω

u(η1t)
. (3.8)

The proof follows immediately by setting z1 = 0 in (3.3).

We notice that the expression (3.8) corresponds to the cumulant generating function of a Gaussian

random variable and hence we can conclude that:

ft

∣∣∣
Ft−1

Q∼ N

(
σ2
ω

u(η1t)

(
η2t +

mt−1

σ2
ω

)
,
σ2
ω

u(η1t)

)
.

Thus, the risk-neutral measure Q preserves the underlying conditional distribution of the latent factor.

Moreover, if we set η1t to be constant, η1t = η1, it follows from (3.7) that ft has an AR(1) structure

under Q.

Corollary 3.2 If the asset returns follow the dynamics from (2.1)-(2.2), then the Ft−1-conditional cu-

mulant generating function of yt under Q defined in (3.2) is given by:

CQyt (z1|Ft−1) = z1µ−
1

2
h1 (z1, η1t) +

h2 (z1, η1t)

h2 (1, η1t)

(
r − µ+

1

2
h1 (1, η1t)

)
, (3.9)

where h1 (z1, η1t) and h2 (z1, η1t) are given in (3.5)-(3.6).

The proof follows immediately by replacing z2 = 0 into (3.3) and from using the martingale constraint

(3.4).

In this case, we notice that the pricing measure does not preserve the underlying distribution of the

asset returns since the above risk-neutral cumulant generating function is not of the same form as that in

(2.9). However, in order to perform pricing and hedging of financial derivatives one does not necessarily
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need to use the asset return dynamics under the martingale measure. In the next section we show how

options can be computed under the physical measure by making use of the closed-form expression of the

Radon-Nikodym derivative in (3.2).

4 Empirical analysis

In this section we investigate the pricing and hedging performance of the autoregressive SV in (2.1)-(2.2)

when risk-neutralized via the exponential factor dependent pricing kernel introduced in Section 3. The

model based option prices are computed based on a sequential estimation procedure in which the model

parameters are obtained using a h-likelihood technique that uses historical returns, while the pricing

kernel parameter is estimated by maximizing an option likelihood function in which quoted option prices

intervene. The hedging ratios are constructed using local-risk minimization strategies under the risk-

neutral measure. The pricing and hedging performance of our model is conducted using an extensive

dataset of European calls and puts on the S&P 500 index and it is tested relative to the Heston-Nandi

GARCH pricing model that is used as a benchmark.

4.1 Data description

We investigate the pricing performance using three datasets of S&P500 European options. The first

two contain call option quotes ranging over the period January 1st, 2012–December 31st, 2013. Both

datasets comprise contracts with maturities between 20 and 250 days and moneyness between 0.9 and

1.1 and were obtained after applying standard filters similar to those proposed in Bakshi et al. (1997).

The first dataset, called Sample A, contains of 6,047 call prices quoted every Wednesday of the reference

period considered and is used for the in and out-of-sample analysis, while the second dataset, called

Sample B, consists of 6,315 call prices recorded every Thursday for the same period and is only used for

the out-of-sample performance assessment. The basic features of the datasets which include the number

of contracts, average prices, and implied volatilities are illustrated in Tables 1 and 2. The average price

and implied volatility for Sample A are $26.683 and 14.0%, respectively, while the corresponding values

for Sample B are $27.33 and 14.0%, respectively. All options are grouped into six classes of moneyness

and four classes of maturities.7 Finally, for the hedging exercise we use a third dataset, called Sample

C, which consists of 2,728 S&P500 put options whose main features are described in Table 3.

4.2 Estimation methodology

The model parameters are estimated using a two-stage procedure based on both asset returns and the

option data described in the previous subsection.

7The moneyness is defined as the ratio between the price of the underlying S0 and the strike price K (Mo := F/K),
so call (respectively, put) options with Mo < 1 (respectively, Mo > 1) are out-of-money (OTM) and those with Mo > 1
(respectively, Mo < 1) are in-the-money (ITM).
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4.2.1 The h-likelihood estimation using returns

Historical return data on S&P 500 is used to estimate the parameter vector θ = (µ, λ, γ, φ, σω) of the

underlying autoregressive SV model in (2.1)-(2.2). We start by noticing that the model (2.1)-(2.2) is a

random-effect model for which the hierarchical GLM framework, first introduced in Lee and Nelder (1996)

and Lee and Nelder (2006), provides an easy-to-implement h-likelihood based estimation technique.

This method with its various extensions (see for instance del Castillo and Lee (2008); Lim et al. (2011)

for its implementation in the context of ARSV models) consists in writing the hierarchical likelihood

as a function of the unknown parameters and of the random effects, which in our particular case are

represented by the latent factor values, and in its subsequent maximization. Estimates for both the model

parameters and the latent variables are hence obtained as the solutions of the corresponding optimization

problem. In the following paragraphs we describe in detail the adopted h-likelihood estimation method

implemented for the model specification in (2.1)-(2.2).

Let y := (y1, y2, . . . , yT )
>

and f := (f1, f2, . . . , fT )
>

be vectors containing T observed returns and

T corresponding unobserved latent factor values, respectively. Denote by g(y, f) their joint probability

density function and define the associated h-loglikelihood function as in Lee and Nelder (1996) and Lee

and Nelder (2006), namely,

h(y; f ,θ) := log g(y, f) =

T∑
t=1

log g(yt, ft|Ft−1), (4.1)

where we recall that Ft = σ (ys, fs; s ≤ t) is the sigma-algebra generated by both the returns and the

factor values up to time t. Additionally, we notice that for any t ∈ {1, . . . , T} it holds that

log g(yt, ft|Ft−1) = log g(yt|Gt) + log g(ft|Ft−1), (4.2)

where we used the fact that the innovations {εt}t∈T and {ωt}t∈T are assumed to be independent (see

Assumption (2)). The two summands in (4.2) are easy to obtain as the logarithms of the probability

density functions for the conditional Gaussian distributions in (2.3) and in (2.4), respectively. Using

(4.2) with (2.3) and (2.4) in (4.1), we can write the h-loglikelihood function as

h(y; f ,θ) = −T log(2π)− 1

2

{
T log σ2

ω +

T∑
t=1

(
yt − µ− λf2

t

)2
f2
t

+
1

σ2
ω

T∑
t=1

(ft − γ − φft−1)
2

+

T∑
t=1

log(f2
t )

}
,

(4.3)

where we assume the existence of an initial value f0 ∈ R. In our empirical estimation experiment, as

it is common in econometrics (see Pollock (2003)), the model is initialized by setting f0 equal to the

unconditional first moment of the latent stationary stochastic process f that is, f0 := E[f ] =
γ

1− φ
.

Following further the h-likelihood technique, we define the vector of smoothed latent factor values

as f·|T :=
(
f1|T , f2|T , . . . , fT |T

)
with ft|T := E[ft|FT ], t ∈ {1, . . . , T}. The fact that the distribution
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for the innovations is assumed to be Gaussian and, in particular, symmetric and unimodal, allows us

to obtain the components of f·|T as the extrema of the corresponding density functions or, equivalently,

of the h-loglikelihood function in (4.3). More specifically, estimates f̂·|T are provided by solution of the

optimization problem

f̂·|T = arg max
f∈RT

h(y; f ,θ). (4.4)

It is of a common practice to tackle this problem solving the score equation ∇fh(y; f ,θ) = 0T , with

∇fh(y; f ,θ) :=

(
∂h(y; f ,θ)

∂f1
,
∂h(y; f ,θ)

∂f2
, . . . ,

∂h(y; f ,θ)

∂fT

)>
, using the Fischer scoring method (we refer

the reader to Lim et al. (2011) and the appendix therein for sparsity-based techniques that can be used to

speed up this computation). In order to make our discussion self-contained, we provide in the appendix

explicit expressions of the gradient and the entries of the associated Hessian matrix.

Finally, with the estimates f̂·|T of the smoothed latent factor values f·|T determined in (4.4), the fixed

model parameters θ are estimated using the corresponding adjusted profile h-loglikelihood function

introduced in Lee and Nelder (1996) as

hprofile(θ) := h
(
y; f̂·|T (θ),θ

)
− 1

2
log det

H
(
y; f̂·|T (θ),θ

)
2π

, (4.5)

where H
(
y; f̂·|T (θ),θ

)
is the opposite of the Hessian matrix of the h-loglikelihood evaluated at the

indicated values and whose elements are provided in the appendices. The estimate θ̂ is computed as the

solution of the optimization problem

θ̂ = arg max
θ∈R5

hprofile(θ). (4.6)

As a summary, the h-likelihood estimation steps are:

(1) Given a log-returns sample y and a current estimate θ̂ of θ, the estimates f̂·|T of the smoothed

latent factor values f·|T are computed by solving (4.4);

(2) Given the estimates f̂·|T , the estimates θ̂ of the parameter vector θ are updated by maximizing the

adjusted profile h-likelihood as in (4.6).

Again, we refer the reader to the appendices for all the necessary details regarding gradient and Hessian

computations as well as the solution of (4.4). The appendix also contains information on how to use the

h-likelihood framework in order to filter and forecast the factor values.

The estimates f̂·|T and θ̂ of the smoothed latent factor values f·|T and of the parameter vector θ,

respectively, allow us to proceed to a second stage in which we calibrate the pricing kernel parameters

using quoted option prices.
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4.2.2 Pricing kernel calibration using option prices

In the second stage, given the parameter values estimated in the h-likelihood procedure, we calibrate

the pricing kernel parameters using the observed option prices. More specifically, we assume a constant

factor preference parameter, η2t = η2, and since the market of price of factor risk η1t depends on η2

through equation (3.4), we have only one parameter to be estimated at this step.

Following the approach in Trolle and Schwartz (2009), we construct an option likelihood in the

following way. For each set of quoted option prices Omkt := {Omkt
1 , . . . , Omkt

N }, we define the vega

weighted option errors by:

ei :=
Omkt
i −Oi
νmkt
i

, i = 1, . . . , N.

Here, Oi represents the model option price and νmkt
i is the Black-Scholes vega corresponding to the

quoted option price. Furthermore, we assume that ei are independent and normally distributed with

mean zero and variance σ2
e := 1

N

N∑
i=1

e2
i . Thus, the log-likelihood function of the option price vector Omkt

is given by:

logL(Omkt, θ̂, η2) =

N∑
i=1

logLi(O
mkt
i , θ̂, η2) = log

(
1

νmkt
i

fe

(
Omkt
i −Oi
νmkt
i

))
,

where fe(·) is the probability density function for a Gaussian random variable with mean zero and

variance σ2
e , θ̂ is the estimated model parameter vector from the h-likelihood step, and η2 is the pricing

kernel parameter to be estimated. In the remainder of this subsection, we briefly describe how the option

prices are computed.

Note that unlike the situation under the physical measure, there are no explicit expressions available

that describe the risk-neutral dynamics of the asset returns under the factor-dependent pricing kernel.

Therefore, we evaluate the option prices using Monte-Carlo simulations under P by generating the asset

paths according to (2.1)-(2.2) and then weighting the option payoff by the corresponding Radon-Nikodym

derivative path. For example, the price of any call option i with i = 1, . . . , N , strike Ki and maturity Ti

is given by:

Oi = EQ [exp (−rTi) max (STi −Ki, 0) |Ft−1] =
1

M

M∑
j=1

exp (−rTi) max
(
SPTi

(j)−Ki, 0
)
NTi(j).

Here SPTi
(j), j = 1, . . . ,M represents the j-th simulated path of the asset price under the physical

measure, NTi
(j) is the j-th simulated Radon-Nikodym factor given in (3.2), and M is the number of

Monte-Carlo paths. In our calibration exercise we use M = 20, 000. The continuously compounded

one-period interest rate r is obtained from the corresponding T-Bill rates adequately interpolated in

order to match the option maturity. The starting values for the asset price process and the latent value

are provided by the last smoothing estimates obtained from the h-likelihood procedure. Furthermore,
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in order to reduce stochastic noise and in the spirit of Eichler et al. (2011), we use the same random

numbers for generating the Monte Carlo paths at each step in the maximization of the likelihood. Note

that, in general, logL(Omkt, θ̂, η2) is a non-convex function of η2, so we need to use global search solvers

in order to make sure that we end up with a global optimal solution.

4.3 Hedging implementation

We follow a hedging strategy based on the minimization of the local risk, as presented in Fölmer et

al. (2002) and references therein. This hedging implementation is based on the construction of two-

instrument portfolios formed with the risk asset and a risk-free bond. We consider a generalized trading

strategy denoted by (ξB , ξS) =
{(
ξBt , ξ

S
t

)}
t∈T , where ξBt is adapted to the filtration Ft and represents

the amount invested in the bond, while ξS is a Ft-predictable process quantifying the amount invested

in the risky asset. The value process associated to this trading strategy, V (ξB , ξS) =
{
Vt(ξ

B , ξS)
}
t∈T ,

is defined by:

V0(ξB , ξS) = ξB0 , and Vt(ξ
B , ξS) = ξBt ·Bt + ξSt · St, t ∈ T .

The cost process associated to this strategy is denoted by C(ξB , ξS) =
{
Ct(ξ

B , ξS)
}
t∈T and is given by:

Ct(ξ
B , ξS) = Vt(ξ

B , ξS)−
t∑

k=1

ξSk · (Sk − Sk−1) , t ∈ T .

Since under our autoregressive SV model the markets are incomplete, option prices cannot be fully

replicated using such self-financing portfolios. There are various optimality criteria proposed in the

literature to tackle simultaneously the pricing and hedging of these financial derivatives. In this paper

we use the local risk minimization criteria, where the optimization problem is carried out in the risk

neutral world.8 More specifically, we find the trading strategy which solves the following optimization

problem for any t ∈ T :

(ξ̂Bt , ξ̂
S
t ) = argmin

ξBt ,ξ
S
t

EQ
[(
C̃t+1(ξB , ξS)− C̃t(ξB , ξS)

)2 ∣∣∣Ft] , t ∈ T .

Here, C̃(ξB , ξS)t represents the discounted cost of hedging C̃(ξB , ξS)t := exp (−rt)C(ξB , ξS)t. The

optimal locally risk minimizing trading strategy for a financial derivative with payoff H(ST ) at maturity

is determined by the following recursions:

ξ̂St+1 = exp (−r(T − t))EQ [H(ST ) (exp (−r)St+1 − St) | Ft]
VarQ [exp (−r)St+1 − St | Ft]

, (4.7)

V̂t(ξ̂
B , ξ̂S) = EQ [exp (−r(T − t))H(ST ) | Ft] , (4.8)

8A detailed discussion on the advantages of using the local risk minimization criteria with respect to a martingale
measure is provided in Badescu et al. (2014).
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Here we assumed that V̂T (ξ̂B , ξ̂S) = H(ST ) and for any t ∈ T , the optimal allocation in the bond is

determined from:

ξ̂Bt =
1

Bt

(
V̂t(ξ̂

B , ξ̂S)− ξ̂St St
)
, (4.9)

where ξ̂St and V̂t(ξ̂
B , ξ̂S) are provided in (4.7)-(4.8). Note that the above scheme requires that the

hedging is performed on a daily basis. However, the above recursions can be easily adapted if hedging

takes place at lower frequencies than the one at which the asset prices are observed. For example, in our

empirical analysis, the optimal portfolio is rebalanced on a weekly basis even though the prices of the

underlying asset are quoted daily.

Since there are no closed-form expressions available, the hedging ratios ξ̂S are evaluated using Monte-

Carlo simulations. Thus, the conditional expectation and variance in (4.7) are estimated usingM = 5, 000

paths, at each time t ∈ T . Each strategy is initialized using the estimated parameters and the smoothed

volatilities coming from the h-likelihood step.

4.4 Empirical results

The empirical pricing and hedging performance of our autoregressive SV (ARSV) model is assessed in

this section. For the pricing exercise we consider as benchmark the affine GARCH model of Heston and

Nandi (2000) (HNGARCH) risk-neutralized with the variance dependent pricing kernel of Christoffersen

et al. (2013)9. In the hedging analysis we additionally include in the comparison the Black-Scholes model

performance.

4.4.1 Option pricing performance

We carry out an extensive in and out-of-sample pricing performance assessment using the option data

sets spelled out in Tables 1 and 2. The model and the pricing kernel parameters are estimated

using the sequential estimation procedure described in Section 4.2 and are updated as follows. For the

first day in Sample A (Wednesdays), we run the h-likelihood estimation of the model parameter vector

θ = (µ, λ, γ, φ, σω) using the historical daily returns on S&P 500 over a period of ten years prior to

that date, for a total of 2,520 observations. Next, we calibrate the latent factor risk parameter η2 from

the pricing kernel using an options likelihood constructed using all options quotes on that particular

Wednesday. Finally, the parameters obtained at this stage are used for the out-of-sample exercise in

which we compute the prices quoted the next day (the corresponding Thursday from Sample B), as well

as those quoted the next Wednesday from Sample A. This procedure is repeated for the whole dataset

from Sample A and the model parameters are reestimated on a monthly basis using a rolling window of

2,520 observations.

9Note that although the risk-neutral GARCH model of Heston and Nandi (2000) allows for a semi-closed form expression
for the option prices, we implement it using Monte Carlo simulations in a similar fashion as our autoregressive SV model,
in order to make the comparison more fair.
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In order to assess the performance of our model relative to the Heston and Nandi (2000) affine

GARCH option pricing model we report the Implied Volatility Root Mean Squared Error (IVRMSE)

measure, defined below:

IV RMSE =

√√√√ 1

N

N∑
i=1

(IV − IV mkt)
2 × 100.

Here, the IV and IV mkt represent the Black-Scholes implied volatilities corresponding to the prices

associated to the proposed model and to the observed market quotes, respectively.

In Table 4 we present the IVRMSEs for the case in which no market price of factor risk is considered,

that is, η2 = 0 and our estimates are based solely on the historical return data, while in Table 5 we

illustrate the case when η2 is calibrated using option prices. Both tables contain three modules structured

as follows: the“In-Sample Error” box reports the average IVRMSE for each Wednesday of Sample A

with parameters calibrated based on option quotes from the same day; the “Next Day Pricing Error”

box reports the average IVRMSE for each Thursday of Sample B with parameters calibrated based on

option quotes from the previous day; in the box called “Next Week Pricing Error” we report the average

IVRMSE for each Wednesday from Sample A using the parameters calibrated based on option quotes

from the preceding Wednesday.

The results from Tables 4 and 5 indicate that our ARSV model consistently outperforms the

HNGARCH model for the in and out-of-sample exercises under both risk-neutral measure considered.

For example, by examining Tables 4 for the in-sample-scenario, we notice that the overall IVRMSE

for the ARSV model is 2.953, while the one for the HNGARCH process is 4.040.The improvement for

options with maturities below 180 days ranges from around 15% to 40%, the effect being more pronounced

for short term options. Furthermore, the ARSV model outperforms the HNGARCH for all groups of

maturities considered, with an overall improvement of around 28% for deep ITM options, 25% for ATM

options and 21% for deep OTM contracts. For the out-of-sample analysis, we notice a similar behaviour

for the pricing errors. When pricing with the ARSV model vs the HNGARCH benchmark, the overall

IVRMSE is reduced by around 28% for both the next day and the next week pricing exercises. The only

scenario when the HNGARCH outperforms the ARSV counterpart is for very long deep OTM options.

When the latent factor risk is priced, our proposed model outperforms the GARCH benchmark in a

similar way for the in-sample case, but the out-of-sample overall pricing differences are slightly smaller.

For instance, for the “Next Day Pricing Error” the overall improvement is of 18%, while for the “Next

Week Pricing Error” is of 12%. Finally, we document in Table 5 the same patterns regarding the

behaviour of the IVRMSE with respect to the moneyess and maturity classes as in Table 4.

4.4.2 Hedging performance

The hedging portfolio are constructed using the locally risk minimization ratios described in Section 4.3

and are rebalanced on a weekly basis. We use the following normalized hedging error (NHS) to assess
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the performance of our autoregressive model relative to the HNGARCH model and the Black-Scholes

(B-S) model:10

NHE(ξ) :=

∣∣∣∣H(ST )− V0 −
K∑
i=0

ξ̂ti+1
·
(
Sti+1

− Sti
)∣∣∣∣

V0

Here, H(ST ) is the option payoff at expiration, V0 is the option price at time 0, St is the observed

value of the underlying at time t, and {t0 = 0, t1, . . . , tK} represent the set of rebalancing dates during

the lifetime of the option. The ratios ξ̂t are computed using the formulas (4.7)-(4.9). The results are

reported in Table 6. As in the option pricing case, we notice that hedging with the ARSV dynamics is

preferred to hedging using the corresponding HNGARCH and B-S ones. The overall NHE for the ARSV

model is of 0.491 compared to an NHE of 0.629 for the HNGARCH and 0.758 for the B-S models. A

closer look at Table 6 reveals that the ARSV outperforms both models for all 20 groups of maturity and

moneyness considered. The largest improvement of 48% over the HNGARCH counterpart is observed

for OTM options with maturity T < 30, this difference becoming smaller for ITM options.

5 Conclusions

In this paper we propose a one-factor autoregressive SV model for pricing and hedging European style

options. Using an exponential affine pricing kernel which contains both equity and latent factor risk

preferences, we derive the risk-neutral generating functions for the asset returns and for the factor

process. The change of measure preserves the conditional distribution of the factor model, but not that

of the asset return process.

We provide a detailed empirical analysis to assess the pricing and hedging performance of our model

using both historical returns and option quotes written on the S&P 500 index. The implementation

is based on a sequential type algorithm where the model parameters are estimated first using the h-

likelihood method and then pricing kernel parameters are calibrated to the observed market prices. For

the hedging part, we construct two-instrument portfolios formed with a riskless asset and the underlying

and we compute the hedging ratios using a local risk minimization criterion.

Our numerical results indicate that our autoregressive SV model consistently outperform the Heston

and Nandi GARCH option pricing model for almost all classes of moneyness and maturity considered.

The one week out-of-sample improvements are substantial of around 28% in the case of a zero market

price of risk and 12% when the factor risk preference are included in the pricing kernel. The only situation

when the HNGARCH model outperforms the ARSV is for very deep OTM long maturity options. The

hedging results also support the findings from the pricing exercise that the ARSV model is superior to

the HNGARCH counterpart.

Our framework can be further extended to accommodate for multi-factor dynamics and non-Gaussian

factor processes, and a more detailed comparison with more complex GARCH dynamics and other

10The Black-Scholes portfolios are constructed using the usual BS delta hedging formulas.
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discrete SV models has to be performed.
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6 Appendix

6.1 Proof of Proposition 2.1

First, we express the the Ft−1-conditional bivariate cumulant generating function (c.g.f.) of yt and ft

under P in terms of the corresponding conditional c.g.f. of ft and f2
t :

CP(yt,ft) (z1, z2|Ft−1) := log EP [exp (z1yt + z2ft)|Ft−1] = log EP
[
exp

(
z1

(
µ+ λf2

t

)
+ z1ftεt + z2ft

)
|Ft−1

]
= log EP

[
EP
[
exp

(
z1

(
µ+ λf2

t

)
+ z1ftεt + z2ft

)
|Gt
]
|Ft−1

]
= log EP

[
exp

(
z1

(
µ+ λf2

t

)
+ z2ft

)
EP [exp (z1ftεt)|Gt] |Ft−1

]
= z1µ+ CP(ft,f2

t )

(
z2, z1λ+

1

2
z2

1 |Ft−1

)
(6.1)

Since ft|Ft−1

P∼ N
(
mt−1, σ

2
ω

)
, with mt = γ + φft, it follows that f2

t has an Ft−1-conditional scaled non-

central Chi-Square distribution under P with 1 degree of freedom, scaling parameter σ2
ω and noncentrality

parameter m2
t−1/σ

2
ω:

f2
t |Ft−1

P∼ snχ2
1

(
m2
t−1

σ2
ω

, σ2
ω

)
.

The conditional c.g.f. of this distribution is given by:

CPf2
t

(z|Ft−1) = −1

2
log
(
1− 2zσ2

ω

)
+

zm2
t−1

1− 2zσ2
ω

, 2zσ2
ω < 1.

Finally, the bivariate conditional c.g.f. of ft and f2
t is given by:

CP(ft,f2
t ) (z1, z2|Ft−1) = −1

2
log
(
1− 2z2σ

2
ω

)
−
m2
t−1

2σ2
ω

+
σ2
ω

2(1− 2z2σ2
ω)

(
z1 +

mt−1

σ2
ω

)2

, 2z2σ
2
ω < 1.

Replacing the above equation into (6.1) and using the notations from (2.6)-(2.7), we find that:

CP(yt,ft) (z1, z2|Ft−1) = z1µ−
1

2
log u(z1) +

v (z2,mt−1)

u(z1)
−
m2
t−1

2σ2
ω

, z1 (z1 + 2λ)σ2
ω < 1, z2 ∈ R.

This completes the proof. �

6.2 Proof of Proposition 3.1

We compute the conditional bivariate c.g.f. of (yt, ft) under the risk neutral measure Q provided in (3.2)

as follows:

CQ(yt,ft) (z1, z2|Ft−1) := log EQ [exp (z1yt + z2ft)|Ft−1] = log EP [exp (z1yt + z2ft)Nt|Ft−1]

= CP(yt,ft) (z1 + η1t, z2 + η2t|Ft−1)− CP(yt,ft) (η1t, η2t|Ft−1)

= z1µ−
1

2
log

u (z1 + η1t)

u (η1t)
+
v (z2 + η2t,mt−1)

u (z1 + η1t)
− v (η2t,mt−1)

u (η1t)
. �
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6.3 Computation of the gradient and the Hessian of the h-loglikelihood func-

tion

First, we provide the expressions for the T components of the gradient∇fh(y; f ,θ) of the h-likelihood (4.1).

A straightforward computation yields for t ≤ T − 1:

∂h(y; f ,θ)

∂ft
= −λ2ft −

1

ft
+

(µ− yt)2

f3
t

+
φ (ft+1 + ft−1) + γ(1− φ)−

(
1 + φ2

)
ft

σ2
ω

, (6.2)

and for t = T
∂h(y; f ,θ)

∂fT
= −λ2fT −

1

fT
+

(µ− yT )
2

f3
T

− fT − γ − φfT−1

σ2
ω

. (6.3)

Regarding the negative Hessian H (y; f ,θ) of the h-loglikelihood, it is a banded matrix of dimension T×T

whose (i, j) elements Hij are defined as Hij := −∂h
2(y; f ,θ)

∂fi∂fj
and for any i, j ≤ T − 1 are determined by

the following relations

Hij =



λ2 − 1

f2
i

+ 3
(µ− yi)2

f4
i

+
1 + φ2

σ2
ω

, if i = j,

− φ

σ2
ω

, if |i− j| = 1,

0, otherwise,

(6.4)

which is easy to verify. Additionally, HTT = λ2 − 1

f2
T

+ 3
(µ− yT )

2

f4
T

+
1

σ2
ω

.

6.4 Forecasted and filtered latent factor values

First, we denote by ft|t−1 := E [ft|Ft−1] and by ft|t := E [ft|Ft] the forecasted (predicted) and filtered

(updated) values of the latent factor. Let F∗t = σ
(
ys, fs|s; s ≤ t

)
be the sigma-algebra generated by both

the return and the filtered factor processes, and let G∗t = σ
(
ys, fs|s, ft; s ≤ t− 1

)
= F∗t−1

⋃
{ft} be its

corresponding augmented filtration. In this notation the following relations hold

ft|t−1 = arg max
ft∈R

g(ft|F∗t−1), (6.5)

ft|t = arg max
ft∈R

g(ft|F∗t−1 ∪ {yt}) = arg max
ft∈R

g(yt|F∗t−1 ∪ {ft})g(ft|F∗t−1) = arg max
ft∈R

g(yt|G∗t )g(ft|F∗t−1),

(6.6)

where we can use the conditional distribution properties provided in (2.3)-(2.4). We notice that both

the return process and the latent factor process are conditionally Gaussian distributed with respect to

G∗t and F∗t−1, respectively, that is

yt|G∗
t
∼N

(
µ+ λf2

t , f
2
t

)
and ft|F∗

t−1
∼N

(
γ + φft−1|t−1, σ

2
ω

)
. (6.7)
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We can hence rewrite the optimization problems (6.5)-(6.6) in the following equivalent form

ft|t−1 = arg min
ft∈R

(
ft − γ − φft−1|t−1

)2
= γ + φft−1|t−1, (6.8)

ft|t = arg min
ft∈R

u(ft), with u(ft) := −1

2

(
log(f2

t ) +
(yt − µ− λf2

t )2

ft
+

(ft − γ − φft−1|t−1)2

σ2
ω

)
. (6.9)

Again, the extrema in the optimization problem in (6.9) can be found solving the score equation

du(ft)

dft
= −λ2ft −

1

ft
+

(µ− yt)2

f3
t

− ft
σ2
ω

+
γ + φft−1|t−1

σ2
ω

= 0

with respect to ft. Expressions in (6.8) and (6.9) provide the forecasted and the filtered latent factor

values, respectively, as required.



Option pricing and hedging under non-affine autoregressive stochastic volatility models 21

References

Babaoglu, K., Christoffersen, P. F., Heston, S. and Jacobs, K. (2014). Option valuation with volatility

components, fat tails, and non-linear pricing kernels.

Badescu, A., Cui, Z. and Ortega, J.-P. (2015). Non-affine GARCH option pricing models, variance

dependent kernels, and diffusion limits.

Badescu, A., Elliott, R. J. and Ortega, J.-P. (2014). Quadratic hedging schemes for non-Gaussian

GARCH models. Journal of Economic Dynamics and Control 42, 13–32.

Badescu, A. M. and Kulperger, R. J. (2008). GARCH option pricing: A semiparametric approach.

Insurance: Mathematics and Economics 43, 69–84.

Bakshi, G., Cao, C. and Chen, Z. (1997). Empirical performance of alternative option pricing models.

The Journal of Finance 52, 2003–2049.

Bertholon, H., Monfort, A. and Pegoraro, F. (2008). Econometric asset pricing modeling. Journal of

Financial Econometrics 6, 407–458.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political

Economy 81, 637–659.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics

31, 307–327.

Bormetti, C., Corsi, F. and Majewski, A. A. (2015). Term structure of variance risk premium in multi-

component GARCH models.

Chorro, C., Guegan, D. and Ielpo, F. (2012). Option pricing for GARCH-type models with generalized

hyperbolic innovations. Quantitative Finance 12, 1079–1094.

Christoffersen, P., Feunou, B., Jacobs, K. and Meddahi, N. (2014). The economic value of realized

volatility: using high-frequency returns for option valuation. Journal of Financial and Quantitative

Analysis 49, 663–697.

Christoffersen, P., Heston, S. and Jacobs, K. (2006). Option valuation with conditional skewness. Journal

of Econometrics 131, 253–284.

Christoffersen, P., Heston, S. L. and Jacobs, K. (2013). Capturing option anomalies with a variance-

dependent pricing kernel. Review of Financial Studies 26, 1963–2006.

Christoffersen, P. F., Jacobs, K., Ornthanalai, C. and Wang, Y. (2008). Option valuation with long-run

and short-run volatility components. Journal of Financial Economics 90, 272–297.



Option pricing and hedging under non-affine autoregressive stochastic volatility models 22

Corsi, F., Fusari, N. and La Vecchia, D. (2013). Realizing smiles: Options pricing with realized volatility.

Journal of Financial Economics 107, 284–304.

Darolles, S., Gourieroux, C. and Jasiak, J. (2006). Structural laplace transform and compound autore-

gressive models. Journal of Time Series Analysis 27, 477–503.

del Castillo, J. and Lee, Y. (2008). GLM-methods for volatility models. Stat. Model. 8, 263–283.

Duan, J.-C. (1995). The GARCH option pricing model. Mathematical Finance 5, 13–32.

Eichler, A., Leobacher, G. and Zellinger, H. (2011). Calibration of financial models using quasi-Monte

Carlo. Monte Carlo Methods and Applications 17, 99–131.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of

United Kingdom inflation. Econometrica 50, 987–1007.

Feunou, B. and Tédongap, R. (2012). A stochastic volatility model with conditional skewness. Journal

of Business & Economic Statistics 30, 576–591.
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BASIC FEATURES OF THE OPTION PRICING (CALLS) DATASET (WEDNESDAYS)

Moneyness S0/K Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Number
of Contracts

T < 30 471 403 414 232 63 28 1611
30 ≤ T < 80 811 716 722 541 111 54 2955
80 ≤ T < 180 373 211 209 192 46 32 1063
180 ≤ T ≤ 250 128 62 83 99 27 19 418

Across Maturities 1783 1392 1428 1064 247 133 6047

Average
Prices

T < 30 0.715 3.728 14.244 32.236 62.791 102.548 13.682
30 ≤ T < 80 3.401 10.568 25.259 42.978 69.068 108.476 22.111
80 ≤ T < 180 15.927 32.498 51.721 68.634 92.834 130.495 42.551
180 ≤ T ≤ 250 32.932 56.488 75.323 92.194 110.254 140.487 68.762

Across Maturities 7.432 13.957 28.848 49.845 76.395 117.099 26.683

Average
Implied Volatilities

T < 30 0.128 0.118 0.129 0.143 0.169 0.192 0.131
30 ≤ T < 80 0.124 0.125 0.139 0.152 0.165 0.180 0.136
80 ≤ T < 180 0.138 0.149 0.161 0.165 0.179 0.198 0.153
180 ≤ T ≤ 250 0.154 0.167 0.175 0.181 0.184 0.193 0.170

Across Maturities 0.130 0.129 0.142 0.155 0.171 0.189 0.140

Table 1: Basic features of the Sample A option dataset (Wednesdays). Prices in this dataset correspond to the period
January 1st, 2012–December 31st, 2013.

BASIC FEATURES OF THE OPTION PRICING (CALLS) DATASET (THURSDAYS)

Moneyness S0/K Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Number
of Contracts

T < 30 332 403 436 262 81 38 1552
30 ≤ T < 80 913 769 778 584 110 63 3217
80 ≤ T < 180 404 213 219 191 50 40 1117
180 ≤ T ≤ 250 129 62 100 96 29 13 429

Across Maturities 1778 1447 1533 1133 270 154 6315

Average
Prices

T < 30 0.851 3.762 13.742 32.452 60.877 98.193 16.079
30 ≤ T < 80 3.501 10.516 24.820 43.546 69.164 107.068 21.877
80 ≤ T < 180 16.502 32.378 50.652 70.158 92.345 129.480 42.840
180 ≤ T ≤ 250 33.122 54.921 75.785 93.668 112.984 146.419 68.598

Across Maturities 8.109 13.756 28.684 49.714 75.677 114.021 27.334

Average
Implied Volatilities

T < 30 0.128 0.118 0.127 0.143 0.161 0.196 0.131
30 ≤ T < 80 0.123 0.125 0.138 0.153 0.164 0.190 0.135
80 ≤ T < 180 0.139 0.148 0.159 0.170 0.174 0.196 0.154
180 ≤ T ≤ 250 0.152 0.162 0.173 0.180 0.184 0.196 0.168

Across Maturities 0.130 0.128 0.140 0.156 0.167 0.194 0.140

Table 2: Basic features of the Sample B option dataset (Thursdays). Prices in this dataset correspond to the period
January 1st, 2004–December 31st, 2013.
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BASIC FEATURES OF THE OPTION HEDGING (PUTS) DATASET

Moneyness S0/K Across

Maturities [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Number
of Contracts

T < 30 18 67 225 210 346 866
30 ≤ T < 80 17 114 422 298 495 1346
80 ≤ T < 180 3 51 130 80 149 413
180 ≤ T ≤ 250 0 12 41 21 29 103

Across Maturities 38 244 818 609 1019 2728

Average
Prices

T < 30 58.933 33.557 19.404 10.318 5.034 13.376
30 ≤ T < 80 73.138 46.383 34.163 23.088 14.194 25.895
80 ≤ T < 180 98.767 79.584 65.802 50.420 38.948 55.076
180 ≤ T ≤ 250 —— 108.304 97.965 81.412 69.350 87.738

Across Maturities 68.433 52.846 38.329 24.286 16.273 28.673

Average
Implied Volatilities

T < 30 0.133 0.145 0.148 0.168 0.198 0.172
30 ≤ T < 80 0.129 0.149 0.155 0.172 0.190 0.171
80 ≤ T < 180 0.154 0.167 0.168 0.180 0.198 0.181
180 ≤ T ≤ 250 —— 0.175 0.176 0.178 0.205 0.184

Across Maturities 0.133 0.153 0.156 0.172 0.194 0.173

Table 3: Basic features of the Sample C option dataset (Wednesdays). Prices in this dataset correspond to the period
January 1st, 2012–December 31st, 2013.
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OUT OF SAMPLE PRICING ERRORS (IVRMSE in percentage) WITH SEQUENTIALLY ESTIMATED PARAMETERS AND η2 = 0

Moneyness S0/K Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Model HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV

In-Sample
Error

T < 30 2.991 1.787 3.279 2.301 4.062 2.482 4.711 2.575 5.069 3.408 8.425 3.535 3.871 2.338
30 ≤ T < 80 3.073 2.050 3.732 2.249 4.287 2.656 4.277 3.126 5.777 3.616 5.832 4.260 3.961 2.592
80 ≤ T < 180 3.506 2.779 4.371 3.187 4.205 4.170 4.691 3.803 5.369 5.182 5.343 5.590 4.203 3.587
180 ≤ T ≤ 250 3.974 3.812 5.553 4.596 4.698 5.304 4.667 5.414 6.198 6.477 4.937 7.048 4.747 5.002

Across Maturities 3.219 2.325 3.814 2.573 4.236 3.086 4.488 3.429 5.576 4.281 6.262 4.942 4.040 2.953

Next Day
Pricing Error

T < 30 2.994 1.862 2.604 2.218 3.788 2.323 4.474 2.723 5.586 3.107 7.324 3.304 3.753 2.359
30 ≤ T < 80 3.272 1.983 3.441 2.207 4.384 2.467 4.034 3.179 5.885 3.403 5.048 4.042 3.894 2.510
80 ≤ T < 180 3.353 2.854 4.051 3.317 4.670 3.699 4.059 4.234 4.989 4.349 5.483 5.080 4.062 3.544
180 ≤ T ≤ 250 3.876 3.841 5.261 4.114 5.057 4.513 5.027 5.488 3.638 5.929 4.861 7.754 4.662 4.749

Across Maturities 3.290 2.368 3.437 2.515 4.318 2.816 4.235 3.540 5.434 3.852 5.794 4.606 3.948 2.891

Next Week
Pricing Error

T < 30 3.062 1.785 3.096 2.340 3.827 2.572 4.801 2.682 5.990 3.524 11.046 3.752 3.963 2.402
30 ≤ T < 80 3.105 2.062 3.807 2.291 4.347 2.690 4.464 3.046 5.437 3.704 6.208 4.147 4.028 2.593
80 ≤ T < 180 3.412 2.827 3.998 3.227 3.860 4.179 5.154 3.769 5.478 5.247 5.800 5.746 4.158 3.613
180 ≤ T ≤ 250 4.588 3.586 4.522 4.693 4.998 5.240 5.218 5.158 4.293 6.570 4.682 7.307 4.808 4.913

Across Maturities 3.283 2.313 3.679 2.614 4.172 3.115 4.744 3.360 5.498 4.349 7.244 5.051 4.091 2.958

Table 4: Option pricing results for the autoregressive SV (ARSV) model and the Heston and Nandi GARCH (HNGARCH)
model computed using the conditional Esscher transform which corresponds to a zero price of factor risk, η2 = 0.
The parameter values are computed based solely on the asset return daily data and are reestimated every four
weeks. The“In-Sample Error” box reports the average IVRMSE for each Wednesday. The “Next Day Pricing
Error” box reports the average IVRMSE committed each Thursday using the models whose parameters have been
eventually estimated the preceding day. The module marked “Next Week Pricing Error” reports the average
IVRMSE for each Wednesday using the models whose parameters have been eventually estimated the Wednesday
of the preceding week.

OUT OF SAMPLE PRICING ERRORS (IVRMSE in percentage) WITH SEQUENTIALLY ESTIMATED PARAMETERS AND η2 OBTAINED BY CALIBRATION

Moneyness S0/K Across

Maturities [0.900, 0.950] [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

Model HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV HNGARCH ARSV

In-Sample
Error

T < 30 2.748 1.548 2.982 1.828 3.728 2.151 4.102 2.992 4.649 4.359 8.394 4.640 3.535 2.265
30 ≤ T < 80 2.956 1.777 3.639 1.934 4.099 2.568 4.010 3.362 5.353 4.112 5.508 4.527 3.781 2.543
80 ≤ T < 180 3.397 2.676 4.255 3.228 4.041 4.236 4.592 4.110 5.372 5.306 5.621 5.391 4.107 3.641
180 ≤ T ≤ 250 3.922 3.822 5.427 4.527 4.626 5.312 4.560 5.438 6.121 5.913 5.015 7.355 4.669 4.978

Across Maturities 3.079 2.146 3.666 2.322 4.019 2.988 4.194 3.675 5.274 4.632 6.200 5.232 3.845 2.926

Next Day
Pricing Error

T < 30 3.004 1.798 2.570 2.231 3.622 2.853 4.066 3.513 5.663 4.606 7.777 7.122 3.654 2.959
30 ≤ T < 80 3.128 1.804 3.281 2.100 4.238 2.634 3.774 3.423 5.976 4.197 4.735 4.627 3.735 2.609
80 ≤ T < 180 3.304 2.902 3.965 3.602 4.668 4.002 4.102 4.759 5.458 5.043 5.677 5.515 4.075 3.842
180 ≤ T ≤ 250 3.876 4.183 5.218 4.218 5.116 4.976 5.066 5.881 3.453 6.150 4.667 7.828 4.663 5.073

Across Maturities 3.207 2.341 3.328 2.536 4.206 3.125 4.023 3.959 5.568 4.721 5.870 5.875 3.849 3.163

Next Week
Pricing Error

T < 30 2.990 1.646 2.918 2.013 3.566 2.776 4.443 4.213 5.437 6.337 10.791 7.724 3.741 2.989
30 ≤ T < 80 3.162 1.939 3.725 2.293 4.187 2.964 4.293 3.752 5.165 4.253 6.291 5.119 3.934 2.858
80 ≤ T < 180 3.329 3.091 3.934 3.811 3.771 4.918 5.108 5.487 5.595 9.447 5.753 6.303 4.100 4.628
180 ≤ T ≤ 250 4.593 4.223 4.560 5.245 4.972 5.590 5.172 6.315 4.705 7.156 5.011 8.774 4.835 5.654

Across Maturities 3.272 2.381 3.583 2.700 4.005 3.464 4.570 4.492 5.280 6.385 7.214 6.607 3.980 3.509

Table 5: Option pricing results for the autoregressive SV (ARSV) model and the Heston and Nandi GARCH (HNGARCH)
model computed using the factor dependent pricing kernel which corresponds to calibrated prices of factor risk η2.
The model parameters are computed based on daily asset returns and are re-estimated every four weeks and the
pricing kernel parameter η2 is estimated based on the observed option quotes. The“In-Sample Error” box reports
the average IVRMSE for each Wednesday at the time of pricing the options that have been used to optimize
the options likelihood with respect to η2 the very same Wednesday. The “Next Day Pricing Error” box reports
the average IVRMSE committed each Thursday using the models whose parameters have been estimated the
preceding day. The module marked “Next Week Pricing Error” reports the average IVRMSE for each Wednesday
using the models whose parameters have been estimated the Wednesday of the preceding week..
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RESULTS FOR THE 2012-2013 HEDGING EXERCISE

Moneyness S0/K Across

Maturities [0.950, 0.975] [0.975, 1.000] [1.000, 1.025] [1.025, 1.050] [1.050, 1.100] Moneyness

NHSE
Black-Scholes

T < 30 0.745 0.945 1.108 1.113 0.710 0.930
30 ≤ T < 80 0.731 0.753 0.806 0.736 0.596 0.699
80 ≤ T < 180 0.629 0.651 0.666 0.614 0.502 0.586
180 ≤ T ≤ 250 —— 0.618 0.662 0.649 0.510 0.581

Across Maturities 0.730 0.778 0.860 0.847 0.618 0.758

NHSE
HNGARCH

T < 30 0.757 0.959 1.107 1.131 0.770 0.945
30 ≤ T < 80 0.682 0.716 0.743 0.684 0.527 0.670
80 ≤ T < 180 0.542 0.520 0.474 0.449 0.346 0.466
180 ≤ T ≤ 250 —— 0.446 0.399 0.345 0.348 0.384

Across Maturities 0.660 0.660 0.681 0.652 0.498 0.629

NHSE
ARSV

T < 30 0.673 0.807 0.925 0.868 0.396 0.734
30 ≤ T < 80 0.642 0.626 0.621 0.477 0.312 0.535
80 ≤ T < 180 0.473 0.426 0.384 0.316 0.185 0.357
180 ≤ T ≤ 250 —— 0.400 0.318 0.262 0.228 0.302

Across Maturities 0.596 0.565 0.562 0.481 0.280 0.491

Table 6: Average normalized hedging square errors (NHSE) associated with portfolios constructed based on the autoregres-
sive SV model (ARSV), the Heston-Nandi GARCH (HNGARCH) and the Black-Scholes (BS) model; the hedging
strategies for the ARSV and HN are computed using the local risk minimization criteria, and the BS ones are
based on the Black-Scholes delta hedging formula. Each entry in the table has been computed by averaging the
normalized hedging errors committed when handling the options contained in the corresponding moneyness-time
to maturity bin.
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