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Abstract

A method based on various linear and nonlinear state space models used to extract global stochastic

financial trends (GST) out of non-synchronous financial data is introduced. These models are con-

structed in order to take advantage of the intraday arrival of closing information coming from different

international markets so that volatility description and forecasting is improved. A set of three major

asynchronous international stock market indices is considered in order to empirically show that this

forecasting scheme is capable of significant performance gains when compared to standard parametric

models like the dynamic conditional correlation (DCC) family.

Keywords: Multivariate volatility modeling and forecasting, global stochastic trend, extended

Kalman filter, dynamic conditional correlations (DCC), non-synchronous data.

1. Introduction

Many frameworks for the description of financial returns have as their first building block a factor

model of the form

rt = α+ βyt + ut with {ut} ∼WN(0, σ2),

where the instantaneous returns rt at time t of individual assets are presented as an affine function

of a common factor yt additively perturbed with a stochastic stationary white noise process {ut} (not

necessarily normal) with variance σ2. This factor usually accounts for a common market feature to which

all the assets under study are exposed. Consequently, this functional dependence allows to determine,

for a given asset return rt, how much of it has to do with the market situation (through the coefficient

β, which is a function of the correlation between rt and yt) and how much comes from an idiosyncratic
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perturbation ut specifically related to the individual asset. In particular applications of this model,

the factor values yt are sometimes computed by using an index constructed out of a set of assets that

represent the class to which rt is naturally associated. An alternative to this approach consists of

treating the common factor values as a non-observable variable and of extracting them using observed

individual returns via a Kalman-type state-space model. This direction has already been profusely

explored in the literature. In the early available works (see for instance Jeon and Chiang (1991); Kasa

(1992); Chung and Liu (1994); Siklos and Ng (2001); Rangvid (2001); Rangvid and Sorensen (2002);

Phengpis and Apilado (2004)) the authors consider low sampling frequencies in order to be able to

neglect asynchronicity issues. In several more recent references Dungey et al. (2001); Choudhry et al.

(2007); Chang et al. (2009); Lucey and Muckley (2011); Cartea and Karyampas (2011); Bae and Kim

(2011); Felices and Wieladek (2012); Bentes (2015) daily quoted data are used but always using a

synchronized approach.

In this work we use a different point of view introduced in Korhonen and Peresetsky (2013) and later

on extended in Durdyev and Peresetsky (2014); Peresetsky and Yakubov (2015), in which the market

returns are thought of as a non-observable global stochastic trend (GST) whose value is ruled by the

arrival of information coming from different local markets. In this framework, the returns of the GST

are estimated several times per day at time points that are synchronized with the closing times of the

markets that are assumed to drive it. This approach is implemented by setting a state-space model in

which the observation equation writes the different observable individual market returns that we are

interested in as a stochastic perturbation of an affine function of the estimated GST return accumulated

during the 24 hours that precede this quote. It is assumed that the observed returns are those that

drive the GST and hence its returns are estimated as many times per day as different closing times are

included in the list of markets considered.

This point of view has been studied in Korhonen and Peresetsky (2013) using three different setups,

namely: three world indices (NIKKEI 225, MICEX, S&P 500) with three different closing times, five

world indices (NIKKEI 225, MICEX, DAX, PX, S&P 500) with four different closing times, and ten

world indices (NIKKEI 225, HSI, SENSEX, MICEX, DAX, PX, FTSE 100, IBOV, DJI, S&P 500)

with seven different closing times. The estimates of the GST obtained in these different situations are

remarkably similar. The robustness that these results indicate allowed the authors to identify, for each

market, the relative importance of local with respect to global news in stock prices formation.

The main goal of our work is modifying this approach in order to make it amenable to volatility

forecasting and to prove the pertinence of the resulting method when compared to more standard

families of models designed to specifically carry out this task that do not take advantage of the intraday
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arrival of information. The rationale behind this attempt is that the error inherent to the filtering and

forecasting of an unobserved variable like the GST is compensated by the more frequent information

updates, that the use of asynchronous information carries in its wake.

Since the models introduced in Korhonen and Peresetsky (2013); Peresetsky and Yakubov (2015)

are intrinsically homoscedastic, they are not appropriate to handle financial volatility modeling and

forecasting. The heteroscedastic generalization needed for this purpose can be naturally implemented

by using two different approaches. The simplest one consists of using the linear state-space approach

in Korhonen and Peresetsky (2013) in a first step to estimate the GST and to subsequently model

the volatility and conditional correlation of the resulting global trend and idiosyncratic term using an

adapted multivariate correlation model; for this purpose, we consider in this work adapted scalar and

non-scalar versions of the dynamic conditional correlation (DCC) model introduced in Engle (2002);

Tse and Tsui (2002). The non-scalar models are estimated using the techniques introduced in Chrétien

and Ortega (2014); Bauwens et al. (2016). The adjustments of these standard models for the handling

of the GST are implemented at the level of the so called “deGARCHing” or “first estimation step” in

which a model for the conditional variances of the assets of interest is chosen; in our context, we put

to work in this step two different GARCH-type models that take into account in their specification the

chronology with which the different intraday trend returns are quoted. A more sophisticated approach

that we also study is the inclusion of the heteroscedasticity assumption on the GST returns directly

in the formulation of the state-space model by using a GARCH-type and GST-adapted prescription of

the type that we just described. The main complication that arises in this setup is the nonlinearity of

the resulting modeling scheme that we handle using the extended Kalman filter (EKF) (see Durbin and

Koopman (2012) and references therein).

In the two approaches that we just described we proceed in two stages, in the first one we filter the

GST and eventually its conditional variance and, in a second one, we model conditional correlations.

This way to operate is admittedly suboptimal but provides good empirical results in practice that

outperform those obtained with a more elegant one-shot approach that, as we experienced in unreported

simulations, faces important numerical estimation problems that make it less advisable.

The paper is organized as follows. In Section 2.1 we explain in detail the linear and nonlinear

state-space models that we propose. We give details on how they handle the asynchronous character

of the observable data and prove rigorous sufficient conditions that ensure their proper identification.

Section 2.2 contains details on the Kalman filter based model estimation techniques that we use in

the paper, as well as on the model specifications for the conditional variances incorporated in the

nonlinear state-space model, together with the positivity and stationarity constraints that need to
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be imposed at the time of estimation. The GST-based volatility forecasting scheme is described in

Section 4. Section 5 contains an empirical study using the adjusted closing values of three major

indices (NIKKEI 225, FTSE 100, and S&P 500) that are quoted at different times due to the time

zones in which they are geographically based. In this experiment, we use the model confidence set

(MCS) approach of Hansen et al. (2003, 2011) and we implement it with loss functions constructed with

the conditional covariance matrices implied by the different models under consideration. The results

show that the proposed forecasting scheme exhibits excellent and statistically significant performance

improvements when compared to the use of standard multivariate parametric correlation models that

ignore non-synchronicity. Even though no simulation study has been carried out for the method that

we propose, we have tested the robustness of the good empirical results by using another estimation

period that does not include the Fall 2008 volatility events and an out-of-sample forecasting period that

comprises the Great Recession (results reported on the supplementary material section) and by using

another data set (not reported) in which the index FTSE 100 has been replaced by the Russian MICEX.

Section 6 concludes the paper.

A Supplementary Material section is available that contains details about the notation and the

conventions followed in the presentation and the proofs of various technical results. Additionally, the

above mentioned replicate of the empirical study in Section 5 has been added in which the estimation

period does not include the Fall 2008 volatility events and the out-of-sample forecasting period comprises

the Great Recession; this experiment aims at illustrating the robustness of our empirical results with

respect to the estimation period used and the pertinence in some situations of the nonlinear state-space

model.

2. State-space models for the global stochastic trend

We start by recalling the description of the global stochastic trend as the state variable in a state-

space model, as it was introduced in Korhonen and Peresetsky (2013). In order to keep the presentation

simple, we consider only three different non-synchronous assets and our subsequent empirical analysis

takes place in this framework. The generalization to more assets and quoting times is straightforward.

Let rt ∈ R3 be a vector containing three non-synchronous stock market returns (typically based on

adjusted closing prices and computed over a full day) quoted at different times of the same day t ∈ N.

The different intraday quoting times have typically to do with lags in the closing times of the different

markets. The intraday moments of time ti, i ∈ {1, 2, 3} of the given day t at which the components of

(r1,t, r2,t, r3,t)
> of the daily returns vector rt become available are labeled as ti := 3(t− 1) + i, t ∈ N.
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We now assume the existence of an underlying and non-observable global stochastic trend (GST)

and we denote by sti , i ∈ {1, 2, 3}, its intraday log-values for the given calendar date t ∈ N. We now

define εt ∈ R3 as the vector that contains the intra-day stochastic trend log-return components of a

given calendar day t, that is,

εt =


ε1,t

ε2,t

ε3,t

 :=


st1 − s(t−1)3
st2 − st1
st3 − st2

 . (2.1)

Figure 1 represents the chronology of the times at which the different returns are computed together

with the associated information sets (see an explanation later on in Section 4). Following the factor

model scheme discussed in the introduction, for every t ∈ Z we write the log-returns of the components

of rt as excess returns with respect to an affine function of the entries of the vector yt ∈ R3, which is

constructed with the daily GST returns computed at the moments in which the components of rt are

quoted. More specifically yt := (st1 − s(t−1)1 , st2 − s(t−1)2 , st3 − s(t−1)3)> and

ri,t = αi + βiyi,t + ui,t, i = {1, 2, 3} , t ∈ Z, (2.2)

with the regression intercepts αi ∈ R, i = {1, 2, 3}, and the parameters β := (β1, β2, β3)> ∈ R3. For

the time being, in this relation we only assume that the residuals ut are serially uncorrelated (they

are a white noise) with mean zero and unconditional diagonal covariance matrix Σu ∈ S+3 , that is

{ut} ∼WN (03,Σu), Σu := diag
(
σ2
u,1, σ

2
u,2, σ

2
u,3

)
with σu,1, σu,2, σu,3 ∈ R+.

Using the definition (2.1), the returns rt in (2.2) can be written in terms of the non-observable GST

returns in the preceding twenty-four hours as

rt = α+Bet + ut, (2.3)

with et := (ε1,t, ε2,t, ε3,t, ε2,t−1, ε3,t−1)
>

, α ∈ R3, {ut} ∼ WN (03,Σu) as in (2.2), and the matrix

B ∈M5,3 of the form

B :=


β1 0 0 β1 β1

β2 β2 0 0 β2

β3 β3 β3 0 0

 . (2.4)

In order to determine the values of the GST, we consider (2.3) as the observation equation of several

linear and nonlinear state-space models. These particular models are estimated to be subsequently used
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Figure 1: Diagram representing the different variables, time labels, and information sets used in the study as well as their
chronology.

for volatility forecasting.

2.1. The linear and nonlinear state-space models

The linear state-space model. The first model that we present in this subsection is identical to the

one originally considered in Korhonen and Peresetsky (2013):

{
rt = α+Bet + ut, {ut} ∼WN (03,Σu) ,with Σu := diag

(
σ2
u,1, σ

2
u,2, σ

2
u,3

)
, (2.5a)

et = Tet−1 +Rvt−1, {vt} ∼WN(03, I3), (2.5b)

where et ∈ R5, α ∈ R3, the matrix B ∈ M3,5 is provided in (2.4), the matrices R ∈ M5,3 and T ∈ M5

are given by

R :=



σv,1 0 0

0 σv,2 0

0 0 σv,3

0 0 0

0 0 0


, T :=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0


, (2.6)

with σu,i, σv,i ∈ R+ for i ∈ {1, 2, 3}. We emphasize that (2.5a)-(2.5b) constitutes a linear state-space

model in which the dynamical behavior of the GST is prescribed by the corresponding state equation

and where the observation equation establishes a relation between the time evolution of the GST and

the observed returns.
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The nonlinear state-space model. The dynamic specification (2.5b) does not introduce any depen-

dence between the components (ε1,t, ε2,t, ε3,t) of the GST εt, even though this feature is empirically

observed. This has motivated the introduction in Durdyev and Peresetsky (2014); Peresetsky and

Yakubov (2015) of a VAR-type prescription for the dynamics of εt that allows for correlation between

its components while preserving the linearity of the state-space model. Since the focus of this work is

volatility forecasting, we introduce instead the dependence between the components of εt via a specific

nonlinear dynamic prescription for their conditional variances.

There are many different approaches that can be taken in order to implement this strategy. The most

natural one consists in building into the state-space model the entire conditional covariance dynamics

of both the GST εt and the residuals ut. In unreported numerical experiments, we observed that the

complexity of the resulting specification makes its estimation difficult to implement. This limitation

makes advisable a two-steps procedure in which the nonlinear state-space model prescribes the dynamics

of the conditional variances and then conditional covariances are handled separately in a second step.

Consider the following nonlinear state-space model: rt = α+Bet + ut, {ut} ∼WN (03,Σu) , Σu := diag
(
σ2
u,1, σ

2
u,2, σ

2
u,3

)
, (2.7a)

et = Tet−1 +Rt−1(et−1)vt−1, {vt} ∼WN(03, I3), (2.7b)

where et ∈ R5, et := {et, et−1, . . . , e0}, α ∈ R3, the matrices B ∈ M3,5 and T ∈ M5 are provided in

(2.4) and (2.6), respectively, and σu,1, σu,2, σu,3 ∈ R+. The main difference with the linear model (2.5a)-

(2.5b) consists in the particular nonlinear specification of the matrix Rt−1(et−1) ∈M5,3 whose structure

is identical to R in (2.6) but the non-zero entries are defined as (Rt−1(et−1))ii = σi,t(et−1), i ∈ {1, 2, 3}.

This specification of Rt−1(et−1) allows for a dynamic description of the conditional variances of the

state variables (components of the GST) that we are ultimately interested in forecasting. We notice

here that particular functional dependences for σi,t(et−1), i ∈ {1, 2, 3} are a matter of choice. In this

paper we propose two specifications which are consistent with the quoting chronology of the components

of the GST εt.

• Model 1 for the conditional variances in the nonlinear state-space model. In this

first model we define recursively the values σi,t(et−1), i ∈ {1, 2, 3}, using a GARCH-type functional
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dependence adapted to the chronology of the GST components in the following way

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1, (2.8)

σ2
2,t = a2 + δ2σ

2
1,t, (2.9)

σ2
3,t = a3 + δ3σ

2
2,t. (2.10)

In order to insure the positivity of the elements σ2
i,t, the model parameters are required to satisfy the

constraints γ1 ≥ 0 and ai > 0, δi ≥ 0, for all i ∈ {1, 2, 3}. The sufficient conditions for the stationarity of

the process can be obtained using statements in Gouriéroux (1997) that result in the nonlinear inequality

constraint δ2δ3(δ1 + γ1) < 1 (see Supplementary material for details).

•Model 2 for the conditional variances in the nonlinear state-space model. Based on the

same arguments that we used for Model 1, we consider another GARCH-type variant for the functions

σi,t(et−1), i ∈ {1, 2, 3}, that determine the nonlinear state-space model (2.7a)-(2.7b) by allowing this

time the possibility of autoregressive behavior in the volatilities and in the components of the GST. We

set:

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1 + ρ1σ

2
1,t−1 + τ1ε

2
1,t−1, (2.11)

σ2
2,t = a2 + δ2σ

2
1,t + ρ2σ

2
2,t−1 + τ2ε

2
2,t−1, (2.12)

σ2
3,t = a3 + δ3σ

2
2,t + ρ3σ

2
3,t−1 + τ3ε

2
3,t−1, (2.13)

where, again, we ensure positivity by requiring that γ1 ≥ 0 and ai > 0, δi, ρi, τi ≥ 0, for all i ∈ {1, 2, 3}.

Two sets of sufficient stationarity conditions are discussed in detail in the Supplementary Material

section. We provide here the one which consists of the three inequalities


(ρ1 + τ1)(1 + δ2(1 + δ3)) < 1, (2.14a)

(ρ2 + τ2)(1 + δ2(1 + δ3)) < 1 (2.14b)

(δ1 + γ1)(1 + δ2(1 + δ3)) + τ3 + ρ3 < 1 (2.14c)

and which we use in our empirical study in Section 5.

2.2. The linear and extended Kalman filters for state and parameter estimation

We now recall the linear (LKF) and extended (EKF) Kalman filters corresponding to the models

(2.5a)-(2.5b) and (2.7a)-(2.7b), respectively. An in-depth treatment of this topic can be found in Durbin

and Koopman (2012).
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Let r := {r1, . . . , rT} be a sample containing T three-dimensional observed log-returns and for

any t ≤ T denote by Ft the information set generated by the observed returns up to time t, that

is, Ft = σ (r1, . . . , rt). The Kalman recursions yield minimum variance linear unbiased estimates of

the forecasted and updated (or filtered) state vectors and of their covariance matrices. We denote by

εt|t := E [et|Ft] (respectively, εt+1 := E [et+1|Ft]) the updated or filtered (respectively, forecasted)

state vector and by Pt|t := Var [et|Ft] (respectively, Pt+1 := Var [et+1|Ft]) the corresponding covariance

matrices. Additionally, let Ht := Var[rt | Ft−1] be the forecasted conditional covariance matrices of the

returns. The elements that we just introduced can be recursively obtained out of the Kalman recursions

(see Durbin and Koopman (2012)) once ε1 and P1 have been provided. More specifically:

υt = rt − (α+Bεt), Ht = BPtB
> + Σu, (2.15)

εt|t = εt +Ktυt, Pt|t = Pt −KtBPt, with Kt := PtB
>H−1t , (2.16)

εt+1 = Tεt|t, Pt+1 = TPt|tT
> +Qt, with Qt := RtR

>
t . (2.17)

Notice that in the linear case Rt := R in (2.6), while in the nonlinear setup Rt := Rt(et) with Rt(et)

defined as in (2.7b).

If the parameters θ ∈ Rs of the state-space model are known, the Kalman recursions make possible

the filtering of the state vectors for a given observed sample r := {r1, . . . , rT}. Otherwise, the vector

θ̂ ∈ Rs of the model parameter estimates can be obtained via quasi-maximum likelihood method using

a log-likelihood function

logL(r;θ) = −nT

2
log2π − 1

2

T∑
t=1

[
log(det(Ht)) + υ>t H

−1
t υt

]
, (2.18)

where the innovations {υt}t∈{1,...,T} and the covariance matrices {Ht}t∈{1,...,T} are computed using the

Kalman recursions (2.15)-(2.17). The maximization of (2.18) is subjected to various constraints that

depend on the particular specification of the state-space model and that we spell out in the following

two paragraphs.

The linear state-space model. In the linear case (2.5a)-(2.5b), the only constraint that needs to

be imposed at the time of estimation is associated to the proper identification of the model. In the

following proposition, whose proof is provided in an Supplementary Material section, we provide the

sufficient conditions that ensure that the parameters of this model are well identified.

Proposition 2.1. The linear state-space model (2.5a)-(2.5b) is well identified if one of the elements of



Volatility forecasting using global stochastic financial trends extracted from non-synchronous data 10

the vector β = (β1, β2, β3)
>

that define the matrix B in (2.4) is constrained to be equal to a constant

or, alternatively, when one of the unconditional variances σ2
v,1, σ

2
v,2, σ

2
v,3 that define R in (2.5b) is

constrained to be equal to a positive constant.

The nonlinear state-space model. In the nonlinear case, apart from the identification constraints

that we specify below in Proposition 2.2, the volatility specifications σi,t(et−1), i ∈ {1, 2, 3} need to yield

positive values and it is required that the resulting process has stationary solutions. This obviously

depends on the specific parametric dependence chosen to define the functions σi,t(et−1). Regarding

the proper identification of the nonlinear state-space model, we state sufficient conditions in the next

proposition.

Proposition 2.2. The nonlinear state-space model (2.7a)-(2.7b) is well identified if one of the elements

of the vector β = (β1, β2, β3)
>

that define the matrix B in (2.4) is constrained to be equal to a constant

or, alternatively, when one of the components of the vector a := (a1, a2, a3)> that determine Model 1 or

Model 2 is set equal to a positive constant before estimation.

From the numerical point of view, parameter estimates are obtained via the constrained optimization

of the likelihood (2.18). Most standard algorithms (interior point algorithm has been used in the

empirical section) are stable in this setup and produce reliable results with limited computational effort

when using sample sizes of a few thousand time steps. With standard codes and hardware, the linear

model is estimated in a few seconds and its nonlinear counterpart in a few minutes.

3. Capturing time-varying correlations

The main objective of this paper is constructing one-step ahead forecasts for the conditional covari-

ance matrices of the observed asset returns. The state-space models that we introduced in the previous

section exhibit important limitations in that respect which motivates the need for a second modeling

step before proceeding with the forecasting. In this section we explain in detail those limitations and

propose a solution.

Limitations of the state-space models for correlation forecasting. The volatility forecast as-

sociated to the state-space models that we introduced in the previous section are naturally given by

expression (2.15). More specifically, the conditional covariances Ht := Var[rt | Ft−1] are given by

Ht = BPtB
>+ Σu and, moreover, expression (2.17) provides the conditional covariance Pt for different

components of the GST. Indeed, consider first α̂ and B̂ the parameters of the linear (2.5a)-(2.5b) or non-

linear (2.7a)-(2.7b) state-space model estimated via the maximization of the associated log-likelihood
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function (2.18). Second, the linear Kalman filter or the EKF, respectively, provide estimates {ε̂t}

(with ε̂t := εt|t) of the GST {εt} and {ût} of the innovations {ut} of the observation equations, that

is, {ût} :=
{

rt − (α̂+ B̂ε̂t)
}

. All these estimates can be subsequently used in order to obtain the

forecasted conditional covariance matrices Ht of the asset returns.

However, empirically we observe some properties of {ε̂t} and {ût} which are not captured by the

relations for the conditional covariances Pt and Ht. We name here a few:

(i) The process {ût} exhibits heteroscedasticity while both the linear and the nonlinear models capture

by construction only the static unconditional covariance Σû.

(ii) The process {êt} also proves to be empirically heteroscedastic. These facts are captured by none

of the proposed approaches at the first stage. More specifically:

(a) Linear model (2.5a)-(2.5b) is intrinsically homoscedastic, that is, the conditional covari-

ances Ht and Pt of both the returns {rt} and the associated GST are asymptotically constant

in time. Indeed, the matrices R and Σu lead the model to a steady state solution in which Pt

converges to the constant matrix P determined by (see (Durbin and Koopman, 2012, page

86)):

P = TPT> − TPB>H−1BPT> +RR>, and H = BPB> + Σu.

(b) Nonlinear model (2.7a)-(2.7b) both in the case of Model 1 (2.8)-(2.10) and Model 2 (2.11)-

(2.13), the matrix Qt in (2.17) has a non-trivial dynamical behavior and hence so does Pt.

Nevertheless, a straightforward computation shows that Qt has zero off-diagonal entries which

corresponds to zero correlation between the different components of the GST.

Capturing time-varying correlations: the second stage. These observations entail that the de-

scription of the GST associated to the models (2.5a)-(2.5b) or (2.7a)-(2.7b) is not complete enough

to be used for multivariate volatility forecasting. We solve this limitation by using appropriate mul-

tivariate heteroscedastic models fitted to both the filtered estimates {ε̂t} of the GST {εt} and to the

associated estimates {ût} of the residuals {ut} of the corresponding observation equations (2.5a) or

(2.7a), respectively. There is an extensive variety of multivariate volatility models available in the liter-

ature which allow the modeling and forecasting of conditional covariances. Since we are concerned here

about capturing the time-varying correlations in {ε̂t} and in {ût}, the Dynamic Conditional Correlation

(DCC) model (see Engle (2002)) specification suggests itself. The DCC model was originally proposed

to prescribe the dynamics of the conditional correlation matrix of returns that are standardized (or

“deGARCHed”) with the conditional variances of univariate GARCH models.
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More specifically, let ζt ∈ Rn denote the returns vector standardized with some corresponding con-

ditional standard deviations σt. The DCC model prescribes the dynamics of the conditional covariance

matrix Σt through the correlation matrix Rt of the standardized returns ζt as:

Σt = DtRtDt, with Dt = diag(σ1,t, . . . , σn,t), (3.1)

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , Q∗t := I3 �Qt, (3.2)

Qt = (i3i
>
3 −A−B)�Q+A� (ζt−1ζ

>
t−1) +B �Qt−1, (3.3)

where � denotes the Hadamard (or component wise) matrix product, the parameter matrices A and

B are symmetric of size three-by-three, Q is a positive semidefinite parameter matrix of size three-by-

three, and i3 is a column vector whose three components are all equal to one. Equation (3.3) is the

most general DCC prescription proposed by Engle (2002); we call it the Hadamard DCC model.

A simplified and much more parsimonious version of this model is the scalar subfamily in which all

the elements of A are considered identical and likewise those of B; in that case the expression (3.3) is

replaced by

Qt = (1− a− b)Q+ a(ζt−1ζ
>
t−1) + bQt−1, (3.4)

with a, b ∈ R+ such that a + b < 1. The matrix Q is obtained following an approximate targeting

procedure that consists in assuming that Q = E
[
ζtζ
>
t

]
and can thus be estimated by Q̂ :=

∑T
t=1 ζtζ

>
t /T

prior to estimating the model parameters. Despite the fact that Q is not equal to the second moment

matrix of {ζt} and, as a consequence, Q̂ is not a consistent estimator of Q (see Aielli (2013)), this

targeting procedure is used in almost all applications of the DCC model which, according to simulation

results in Aielli (2013), does not lead to strong biases in practice.

In our setup we will be fitting the DCC model to the filtered GST components {ε̂t} and the resid-

uals {ût} which need to be standardized accordingly. The asynchronicity of data and the particular

specification of the state-space models used at the first stage require this “deGARCH”-ing procedure

to be tackled in a non-standard way which we now discuss in detail separately for the case of the linear

and the nonlinear state-space models.

3.1. Capturing dynamic correlations: the linear state-space GST model

We start by noticing again that the linear state-space model is intrinsically homoscedastic which

means that it does not produce any conditional variances that can be used in order to standardize

either the filtered estimates {ε̂t} of the GST or the associated residuals {ût}. This calls for the need

to model the conditional variances of the GST and the residuals keeping in mind that the parametric
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prescription to be proposed needs to respect the chronology with which for each given day t the returns

r1,t, r2,t, r3,t of the different markets become disclosed, or, equivalently, the chronology with which the

filtered components ε̂1,t, ε̂2,t, ε̂3,t of the GST ε̂t and the associated elements û1,t, û2,t, û3,t of the residuals

vector ût become available (see Figure 1). For the sake of clarity in what follows we work only with

{ε̂t} but recall that the same technique needs to be applied to the residuals {ût}.

More specifically, we propose two parameter families of conditional variance dynamics that generalize

Model 1 in (2.8)-(2.10) and Model 2 in (2.11)-(2.13) that we used in the context of the nonlinear state-

space setup. However, it is important to emphasize that the EKF requires the nonlinear state-space

model to be of Markov type at a daily level, while this time we can use intraday dependences that will

allow us to update the information available more frequently. Consider the following specifications:

• Model 1 for the conditional variances.

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε̂

2
3,t−1, (3.5)

σ2
2,t = a2 + δ2σ

2
1,t + γ2ε̂

2
1,t, (3.6)

σ2
3,t = a3 + δ3σ

2
2,t + γ3ε̂

2
2,t. (3.7)

• Model 2 for the conditional variances.

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε̂

2
3,t−1 + ρ1σ

2
1,t−1 + τ1ε̂

2
1,t−1, (3.8)

σ2
2,t = a2 + δ2σ

2
1,t + γ2ε̂

2
1,t + ρ2σ

2
2,t−1 + τ2ε̂

2
2,t−1, (3.9)

σ2
3,t = a3 + δ3σ

2
2,t + γ3ε̂

2
2,t + ρ3σ

2
3,t−1 + τ3ε̂

2
3,t−1. (3.10)

Positivity and stationarity of the conditional variance models. We now study the conditions

that need to be imposed in order to ensure that the models 1 and 2 exhibit second order stationary

solutions and produce positive conditional variances. A way to approach this question consists of

thinking of the three dimensional time series {ε̂t} as the one-dimensional process {ε̂ti} obtained by

ordering the components of each element ε̂t according to the intraday time at which they have been

disclosed. Using this point of view, the models 1 and 2 become one-dimensional GARCH models

with time varying (periodic in this case) coefficients that are usually designated with the acronym

tvGARCH (see Dahlhaus and Rao (2006); Cizek and Spokoiny (2009); Rohan and Ramanathan (2013),

and references therein). More specifically, they can be considered as tvGARCH(1,1) and tvGARCH(3,3)
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models, respectively, if we rewrite them as:

σ2
ti = ati + δtiσ

2
ti−1 + γti ε̂

2
ti−1, and σ2

ti = ati + δtiσ
2
ti−1 + γti ε̂

2
ti−1 + ρtiσ

2
ti−3 + τti ε̂

2
ti−3, (3.11)

with i ∈ {1, 2, 3}, ati := ai, δti := δi, γti := γi, ρti := ρi, τti := τi, and where ti − 1 and ti − 3 are

defined by using recursively the convention

ti − 1 :=

 (t− 1)3 when i = 1,

ti−1 when i ∈ {2, 3}.

The positivity of the conditional variances implied by these models can be obtained by using only

positive coefficients in the expressions that define them. Regarding stationarity, a sufficient condition

of widespread use in the tvGARCH context (see for example Rohan and Ramanathan (2013)) is that

δti +γti < 1 for the model 1, and that δti +γti +ρti +τti < 1 for the model 2, with i ∈ {1, 2, 3}. Numerical

experiments show that, in our particular situation, these conditions lack sharpness and produce mediocre

estimation results. In the following proposition, whose proof is provided in the Supplementary Material

section, we establish less restrictive stationarity solutions that take advantage of the periodicity of the

GARCH coefficients. In order to formulate them, we need to introduce the matrices Ati associated

to the Markov representations of the recursions in (3.11) corresponding to the second model, as well

as their expectations Ai := E [Ati ] (see Section 2.2.2 in Francq and Zakoian (2010) for the details).

Let {vt} ∼WN(03, I3) be the innovations introduced in the definition of the state-space model (2.5b).

Then:

Ati :=



γtiv
2
ti 0 τtiv

2
ti δtiv

2
ti 0 ρtiv

2
ti

1 0 0 0 0 0

0 1 0 0 0 0

γti 0 τti δti 0 ρti

0 0 0 1 0 0

0 0 0 0 1 0


and Ai := E [Ati ] =



γi 0 τi δi 0 ρi

1 0 0 0 0 0

0 1 0 0 0 0

γi 0 τi δi 0 ρi

0 0 0 1 0 0

0 0 0 0 1 0


.

Proposition 3.1. Consider the GARCH models with time-varying coefficients defined by the recursions

in the expression (3.11). If the innovations {vt} that drive them are independent, then the following

conditions imply the existence of a unique periodic (with period equal to three) stationary solution:

(i) For Model 1: (δ1 + γ1)(δ2 + γ2)(δ3 + γ3) < 1.
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(ii) For Model 2: ρ(A3A2A1) < 1, where ρ(·) denotes the spectral radius.

The stationarity condition ρ(A3A2A1) < 1 for Model 2 cannot be implemented as such at the time of

estimation due to the convoluted analytic expression of the spectrum of A3A2A1. Indeed, a straightfor-

ward computation shows that:

A3A2A1 =



γ1ζ2ζ3 + τ3 τ2ζ3 τ1ζ2ζ3 δ1ζ2ζ3 + ρ3 ρ2ζ3 ρ1ζ2ζ3

γ1ζ2 τ2 τ1ζ2 δ1ζ2 ρ2 ρ1ζ2

γ1 0 τ1 δ1 0 ρ1

γ1ζ2ζ3 + τ3 τ2ζ3 τ1ζ2ζ3 δ1ζ2ζ3 + ρ3 ρ2ζ3 ρ1ζ2ζ3

γ1ζ2 τ2 τ1ζ2 δ1ζ2 ρ2 ρ1ζ2

γ1 0 τ1 δ1 0 ρ1


,

with ζi := δi + γi, i = {2, 3}. We now use the fact that for any matrix norm || · || the inequality

ρ(A3A2A1) ≤ ||A3A2A1|| is satisfied and hence it suffices to require that ||A3A2A1|| < 1 to ensure that

ρ(A3A2A1) < 1. We implement this condition by using, for example, the maximum row sum norm

(see Horn and Johnson (2013)), in which case the inequality ||A|| < 1 amounts to the following three

conditions: 
δ1 + γ1 + ρ1 + τ1 < 1, (3.12a)

(δ2 + γ2)(δ1 + γ1 + ρ1 + τ1) + ρ2 + τ2 < 1, (3.12b)

(δ3 + γ3)((δ2 + γ2)(δ1 + γ1 + ρ1 + τ1) + ρ2 + τ2) + τ3 + ρ3 < 1. (3.12c)

Constructing the DCC model. Models 1 and 2 subjected to the appropriate parameter constraints

deliver conditional variances for the filtered components of the GST {ε̂t} that can be used to con-

struct the standardized (or “deGARCH”-ed) corresponding vectors. More specifically, we denote the

standardized components of the GST as ζt ∈ R3 and obtain them via the component-wise assign-

ment ζi,t := ε̂i,t/σ
ε̂
i,t, i ∈ {1, 2, 3} with σε̂

i,t the conditional deviations provided by Model 1 in (3.5)-

(3.7) or Model 2 in (3.8)-(3.10) for the filtered components of the GST {ε̂t}. Additionally, we set

Dε̂
t := diag(σε̂

1,t, σ
ε̂
2,t, σ

ε̂
3,t) in both the Hadamard DCC and the scalar DCC models in (3.1)-(3.3) and

(3.4), respectively. This approach provides via (3.1) time-varying conditional covariance matrices {Σε̂
t }.

The same strategy needs to be put to work in the case of the residuals {ût} that yields conditional

covariance matrices {Σû
t } in an analogous way.
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3.2. Capturing dynamic correlations: the nonlinear state-space GST model

As we mentioned earlier, the nonlinear state-space model (2.7a)-(2.7b) is of Markov type at a daily

level and yields conditional variances for the date t that are measurable with respect to Ft−1. Indeed,

the relation (2.7b) implies that

Var [ε̂i,t | Ft−1] = σε̂ 2
i,t

(
êt−1

)
, Cov [ε̂i,t, ε̂j,t | Ft−1] = 0, for any i, j ∈ {1, 2, 3}, i 6= j, (3.13)

where the functional prescription σε̂
i,t

(
êt−1

)
is given by one of the models (2.8)-(2.10) or (2.11)-(2.13)

under consideration. The second identity in (3.13) shows that this model neglects the conditional

correlation between the components of the GST that is nevertheless empirically observed Durdyev and

Peresetsky (2014); Peresetsky and Yakubov (2015) and that can be captured by the DCC models in

(3.1)-(3.3) or in (3.4). This strategy introduces time-varying correlation between the components of the

GST while preserving the conditional variance (3.13) captured by the non-linear state-space model.

In this instance we construct the standardized vector ζt ∈ R3 via the component-wise assignment

ζi,t := ε̂i,t/σ
ε̂
i,t

(
êt−1

)
, i ∈ {1, 2, 3}, and we subsequently estimate the corresponding DCC models. As

for the residuals {ût}, we need to standardize them with the standard conditional deviations provided

by a GARCH(1,1) model and then fit a relevant Hadamard or scalar DCC model as in (3.1)-(3.3) or

(3.4), respectively.

4. GST-based volatility forecasting

In the following paragraphs we provide the implementation details of the intraday forecasting scheme

for both the linear and the nonlinear state-space models. The empirical performances of the proposed

forecasting strategies are evaluated later on in Section 5.

The extended filtration. We start by constructing for each trading date t, three different filtrations

whose elements F∗ti are the pseudo-information sets generated by the observed returns and the filtered

values ε̂t of the GST up to time ti, i ∈ {1, 2, 3}. We call these the intraday extended information

sets and define them as

F∗t1 := σ ({r1, . . . , rt−1} ∪ {ε̂1, . . . , ε̂t−1, ε̂t1}) , (4.1)

F∗t2 := σ ({r1, . . . , rt−1} ∪ {ε̂1, . . . , ε̂t−1, ε̂t1 , ε̂t2}) = F∗t1 ∪ σ (ε̂t2) , (4.2)

F∗t3 := σ ({r1, . . . , rt} ∪ {ε̂1, . . . , ε̂t}) = F∗t . (4.3)
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GST-based intraday forecasting using the extended filtration. We now construct for each date

t three different intraday forecasts for the conditional covariance matrix Ht of the returns, based on

the information available at (t − 1)3 = t1 − 1, t1 = t2 − 1, and t2 = t3 − 1. We denote these intraday

forecasts by Ht|ti−1, i = {1, 2, 3} and recall that by (2.5a)–(2.5b) or (2.7a)–(2.7b) we have that

Ht|ti−1 := Var[(rt −α) | F∗ti−1] = BP ∗t|ti−1B
> + Σû ∗

t|ti−1, i = {1, 2, 3} . (4.4)

where

P ∗t|ti−1 = Var
[
êt | F∗ti−1

]
=

 Σε̂
t|ti−1 0

0
(
Σε̂

t−1
)
2:3,2:3

 ,

with Σû
t|ti−1 and Σε̂

t|ti−1 the conditional covariance matrices of {ût} and {ε̂t}, respectively, computed

at time t with respect to the elements of the extended filtration associated to the intraday instants ti,

i = {1, 2, 3}. More specifically, Σû
t|ti−1 := Var

[
ût | F∗ti−1

]
and Σε̂

t|ti−1 := Var
[
ε̂t | F∗ti−1

]
. The symbol(

Σε̂
t−1
)
2:3,2:3

denotes the two-by-two block in the lower right corner of the matrix Σε̂
t−1.

We now address in detail the construction of the forecasts Σε̂
t|ti−1 and note that an identical ex-

ercise needs to be carried out for the conditional covariance matrices Σû
t|ti−1 in order to obtain the

forecasts (4.4).

(i) The forecast Ht|t1−1: we produce a forecast for the covariance matrix Ht using the information

available at the intraday instant t1 − 1 = (t − 1)3. Since all the DCC models used in the second

stage in Section 3 produce Ft–predictable covariance matrices and in this case F∗(t−1)3 = Ft−1, it

is clear that the forecast Σε̂
t|t1−1 that we are interested in is given by

Σε̂
t|t1−1 = Σε̂

t|t−1 = Dε̂
t|t−1R

ε̂
t|t−1D

ε̂
t|t−1. (4.5)

The entries of the matrix Rε̂
t|t−1 in this expression are determined by the equations (3.2)–(3.3)

and those of Dε̂
t|t−1 depend on the specific GARCH prescription used to model the conditional

variances of the GST. In the nonlinear case, Dε̂
t|t−1 is determined by (2.8)-(2.10) for Model 1 and

(2.11)-(2.13) for Model 2. In the case of the linear state-space model, those will be (3.5)-(3.7)

for the models of the type 1 and (3.8)-(3.10) for the type 2. More specifically, for Model 1 in
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(3.5)-(3.7) we have

σε̂ 2
1,t = a1 + δ1σ

ε̂ 2
3,t−1 + γ1ε̂

2
3,t−1, (4.6)

σε̂ 2
2,t = a2 + (δ2 + γ2)σε̂ 2

1,t , (4.7)

σε̂ 2
3,t = a3 + (δ3 + γ3)σε̂ 2

2,t , (4.8)

and for Model 2 in (3.8)-(3.10).

σε̂ 2
1,t = a1 + δ1σ

ε̂ 2
3,t−1 + γ1ε̂

2
3,t−1 + ρ1σ

ε̂ 2
1,t−1 + τ1ε̂

2
1,t−1, (4.9)

σε̂ 2
2,t = a2 + (δ2 + γ2)σε̂ 2

1,t + ρ2σ
ε̂ 2
2,t−1 + τ2ε̂

2
2,t−1, (4.10)

σε̂ 2
3,t = a3 + (δ3 + γ3)σε̂ 2

2,t + ρ3σ
ε̂ 2
3,t−1 + τ3ε̂

2
3,t−1. (4.11)

(ii) The forecast Ht|t1 : we produce a forecast for the covariance matrix Ht using the information

available at the intraday instant t1. In this case we assume that the index return r1,t quoted at

the instant t1 of day t has already been observed and that the corresponding GST return ε̂1,t has

been filtered and is available. Now, the forecast Ht|t1 depends again on the kind of state-model

used for the GST modeling. First, in nonlinear case, the model is predictable and is not able to

take advantage of intraday information; indeed, the forecast Ht|t1 coincides with the one obtained

in the previous point and spelled out in (4.5). In the linear state-space model case we use the

approximations

Σε̂
t|t1 := Dε̂

t|t1R
ε̂
t|t−1D

ε̂
t|t1 with Dε̂

t|t1 := diag(σε̂
1,t, σ

ε̂
2,t, σ

ε̂
3,t), (4.12)

and the models of type 1 (3.5)-(3.7) or of type 2 (3.8)-(3.10) for the conditional variance of {ε̂t}

in order to produce the forecasts in the diagonal entries of the matrix Dε̂
t|t1 . More specifically, for

Model 1 in (3.5)-(3.7) we have

σε̂ 2
1,t = a1 + δ1σ

ε̂ 2
3,t−1 + γ1ε̂

2
3,t−1, (4.13)

σε̂ 2
2,t = a2 + δ2σ

ε̂ 2
1,t + γ2ε̂

2
1,t, (4.14)

σε̂ 2
3,t = a3 + (δ3 + γ3)σε̂ 2

2,t , (4.15)
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while for Model 2 in (3.8)-(3.10):

σε̂ 2
1,t = a1 + δ1σ

ε̂ 2
3,t−1 + γ1ε̂

2
3,t−1 + ρ1σ

ε̂ 2
1,t−1 + τ1ε̂

2
1,t−1, (4.16)

σε̂ 2
2,t = a2 + δ2σ

ε̂ 2
1,t + γ2ε̂

2
1,t + ρ2σ

ε̂ 2
2,t−1 + τ2ε̂

2
2,t−1, (4.17)

σε̂ 2
3,t = a3 + (δ3 + γ3)σε̂ 2

2,t + ρ3σ
ε̂ 2
3,t−1 + τ3ε̂

2
3,t−1. (4.18)

(iii) The forecast Ht|t2 : we produce a forecast for the covariance matrix Ht using the information

available at the intraday instant t2. In this case we assume that the index return r2,t quoted at

the instant t2 of day t has already been observed and that the corresponding GST return ε̂2,t has

been filtered and is available. Now, the forecast Ht|t2 depends again on the kind of state-model

used for the GST modeling. In nonlinear case, we again have that Ht|t2 coincides with (4.5). In

the linear state-space model case we use the approximations

Σε̂
t|t2 = Dε̂

t|t2R
ε̂
t|t−1D

ε̂
t|t2 with Dε̂

t|t2 := diag(σε̂
1,t, σ

ε̂
2,t, σ

ε̂
3,t), (4.19)

and we use the models of type 1 (3.5)-(3.7) or of type 2 (3.8)-(3.10) for the conditional variance

of {ε̂t} in order to produce the forecasts in the diagonal entries of the matrix Dε̂
t|t1 .

5. Empirical performance of the GST-based volatility forecasting schemes

In this section we carry out an empirical study to assess the one-step ahead volatility forecasting

performances of the proposed two-stage modeling approaches. More specifically, first, we construct the

linear and nonlinear state-space models for the log-returns of three major market indices with non-

synchronous closing times; second, we fit to the filtered state variables and to the model residuals

(residuals of the observation equations) multivariate conditional correlation models in order to account

for the correlation dynamics that is empirically observed. Finally, we use the estimated models for

one-step ahead volatility forecasting and compare their performances with standard benchmarks in the

literature that do not take into account the arrival of intraday information.
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5.1. Dataset, competing models, and volatility forecasting study

Dataset. We use as dataset5 the daily closing values of three major stock market indices, namely,

NIKKEI 225, FTSE 100, and S&P 5006. These markets are geographically located in different time

zones and have asynchronous closing times: NIKKEI 225 is an index based on the quotes of the Tokyo

Stock Exchange that closes at 6:00 UTC. FTSE 100 and S&P 500 are based on the quotes of the London

and the New York stock exchanges that close at 16:30 and 21:00 UTC, respectively (see Figure 2 for a

diagram representing the chronology of the three markets that are chosen for the empirical study). The

closing values are adjusted for dividend payments and stock splits and the resulting data is synchronized

by taking into account all the holidays of the different markets. The daily log-returns for the three

indices are computed between January 5, 1996 and April 1, 2015 which yields a dataset with T := 4581

observations. The whole log-returns sample is demeaned and it is divided into two parts. The first one

corresponds to the period between January 5, 1996 and April 1, 2013; it has length Test := 4095 and it

is reserved for estimation purposes. The remaining Tout := 486 observations from April 2, 2013 to April

1, 2015 are reserved for an out-of-sample study consisting on one-day ahead volatility forecasting.

In order to illustrate the robustness of the results obtained in this empirical study, we have included

in the supplementary material in Section Appendix A.6 a similar analysis based on the same dataset

but using a shorter estimation period (January 5, 1996 – December 4, 2006) that does not contain

the volatility events in the Fall 2008. The out-of-sample study in that case comprises the entire Great

Recession (December 5, 2006 – April 1, 2015).

Competing models. We consider three groups of models whose one-step ahead volatility forecasting

performance will be assessed, namely:

(i) Scalar and Hadamard DCC daily models. These families of models are designed and widely

used for volatility forecasting and we hence choose them to serve as a benchmark for the forecasting

tasks that we perform in this empirical section.

Estimation: We proceed in a standard way by constructing and estimating on Test observations

both scalar and Hadamard three dimensional models that use exclusively the daily quoted infor-

mation on the closing values of the indices under consideration and, as it is customary, ignore

their non-synchronicity. The first stage of the model construction is common for both the scalar

5In our empirical exercises we used also another dataset that consisted of NIKKEI 225, MICEX, and S&P 500. The
conclusions were analogous but we however decided to consider the FTSE 100 index instead of MICEX since it belongs
to the same group of the major stock market indices of the developed markets.

6Data were downloaded from the Yahoo Finance database
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Figure 2: Diagram representing the different variables, time labels, and chronology corresponding to the indices used in
the empirical study.

and the Hadamard setups. The deGARCHing of the returns is accomplished with the condi-

tional deviations provided by standard one-dimensional GARCH(1,1) models that are estimated

on the individual daily returns. The estimation procedure in the case of the scalar DCC (3.4) is

straightforward (see for instance Engle (2009)), while the Hadamard prescription (3.3) presents

some complications due to the presence of positivity constraints to which the model parameters

are subjected and that we handle using the tools presented in Bauwens et al. (2016).

Volatility forecasting: We implement volatility forecasting using the Tout observations reserved

for the out-of-sample study. The value of the one-day ahead forecast of the conditional covari-

ance matrix Ht of the returns (r1,t, r2,t, r3,t), t ∈ {Test + 1, . . . , Test + Tout}, with respect to the

information set Ft−1 is computed by setting Ht := DtRtDt, with Rt given by (3.1)-(3.3) and

Dt := diag(σ1,t, σ2,t, σ3,t) a diagonal matrix containing the conditional standard deviations ob-

tained out of the GARCH(1,1) model that has been previously fit to the log-returns during the

first stage of the DCC model construction. The models do not take into account the asynchronicity

of the data arrival, hence the forecasting exercise provides one conditional covariance matrix Ht

of the returns (r1,t, r2,t, r3,t) for each day t ∈ {Test + 1, . . . , Test + Tout}.

(ii) Linear state space model combined with Models 1 and Model 2 (LSS Model 1/LSS

Model 2).

Estimation: We use the linear state-space setup (2.5a)-(2.5b) and we estimate the components

{ε̂t} of the GST via the Kalman recursions (2.15)-(2.17), together with the model parameters by
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minimizing minus the log-likelihood function provided in (2.18) associated with the considered

Test in-sample observations. The model has been properly identified using Proposition 2.1 by

setting β1 = 0.43557. We proceed by fitting scalar and Hadamard DCC models on the filtered

estimates {ε̂t} of the GST and on the associated linear state-space model residuals {ût}. In order

to standardize the estimates {ε̂t} that are needed to construct the DCC model, we use either Model

1 in (3.5)-(3.7) or Model 2 in (2.11)-(2.13) whose parameters are estimated under the associated

positivity and stationarity constraints (see Section 3.1 for the detailed discussion and, in particular,

Proposition 3.1). In order to standardize the residuals {ût}, we follow the analogous approach.

Additionally, we add to the competing models the case when these residuals are “deGARCHed”

with the conditional deviations coming from the standard individual GARCH(1,1) models. Scalar

and Hadamard DCC (3.3) models are used at the time of modeling the conditional variances of

both for the GST components {ε̂t} and of the residuals {ût}.

Volatility forecasting: We construct the volatility forecasts for the Tout observations reserved

for the out-of-sample study following the description provided in Section 4. For each day t ∈

{Test+1, . . . , Test+Tout} LSS Model 1 and LSS Model 2 provide three forecasts for the conditional

covariance matrix of the returns (r1,t, r2,t, r3,t). More specifically at the end of the day before,

the third market closes and we construct Ht|(t−1)3 = Ht|t1−1 (see point (i) in Section 4), after

the closing of the first market, Ht|t1 becomes available (see point (ii) in Section 4) and, finally, as

soon as the second market is closed, Ht|t2 is obtained (see point (iii) in Section 4).

(iii) Nonlinear state space model combined with Models 1 and 2 (NSS Model 1/NSS

Model 2): A procedure identical to the one presented in the previous point is followed but, in

this case, using the nonlinear state-space model (2.7a)-(2.7b) for the GST components {ε̂t} in

which the Model 1 (2.8)-(2.10) or the Model 2 (2.11)-(2.13) prescribe their conditional variances

using a GARCH-type functional dependence adapted to their chronology. The models are properly

identified using Proposition 2.2 by setting β1 = 0.43558 and, additionally, the associated positivity

and stationarity constraints are imposed (see the discussion below (2.8)-(2.10) and the relations

(2.14a)-(2.14c), respectively). As in the previous case, scalar and Hadamard DCC models are

then used for both the filtered {ε̂t} and the residuals {ût}. The standardizing of the estimated

GST components {ε̂t} is performed by using the conditional deviations implied by the Model 1 in

(2.8)-(2.10) or by the Model 2 (2.11)-(2.13). In the case of construction of the DCC model for the

7This choice of β1 is arbitrary and is taken close to the estimate of β1 obtained in Korhonen and Peresetsky (2013)
8See footnote 7.
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residuals {ût}, these are standardized with the conditional deviations determined with standard

univariate GARCH(1,1) models.

Volatility forecasting: The volatility forecasting is carried out using the Tout observations

reserved for the out-of-sample study following the description provided in Section 4. Since in this

case we cannot take advantage of the intraday information, the forecasting exercise provides one

conditional covariance matrix Ht of the returns (r1,t, r2,t, r3,t) for each day t ∈ {Test +1, . . . , Test +

Tout}.

In-sample goodness-of-fit. The table 5.1 contains the values of the log-likelihood function for the

corresponding models at the estimated parameters. For the conventional DCC models in (i) fitted to

the returns these values are obtained in a standard way. For the two other groups of models that we

put forward in this work, namely (ii) and (iii), the log-likelihood function incorporates the two stages

(state-space and DCC) and is evaluated using the expression (2.18) with T = Test and Ht given by

Ht = BPtB
> + Σû

t (5.1)

with

Pt =

 Σε̂
t 0

0
(
Σε̂

t−1
)
2:3,2:3

 , Σε̂
t = Dε̂

tR
ε̂
tD

ε̂>
t , and Σû

t = Dû
t R

û
t D

û>
t .

Table 5.1 reports for each of the competing models the total number of parameters, the associated values

of the Akaike (AIC), consistent Akaike (cAIC), and Bayesian information criteria (BIC). The results

reveal that the worst performing models for all the statistics considered are the standard DCC models

that ignore the asynchronous intraday arrival of information. The best fit is exhibited by the linear

state space model with the second prescription (3.8)–(3.10) for the conditional variances of the GST

and the residuals, combined with a scalar DCC model for the corresponding conditional correlations.

Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

k 11 21 30 50 30 50 42 62 36 56 25 45 31 51

AIC -76274.8813 -76255.1114 -86500.105 -86459.796 -86412.087 -86370.178 -87160.881 -87120.842 -86764.803 -86723.174 -80486.3211 -80477.0412 -82035.419 -81999.3310

BIC -76205.3913 -76122.4414 -86310.575 -86143.917 -86222.556 -86054.298 -86895.541 -86729.152 -86537.373 -86369.394 -80328.3811 -80192.7512 -81839.569 -81677.1310

cAIC -76274.8213 -76254.8814 -86499.645 -86458.536 -86411.627 -86368.918 -87159.991 -87118.902 -86764.143 -86721.594 -80486.0011 -80476.0112 -82034.929 -81998.0110

logL 38148.4414 38148.5513 43280.055 43279.896 43236.047 43235.098 43622.441 43622.422 43418.403 43417.594 40268.1612 40283.5211 41048.7010 41050.669

Table 5.1: Total number of model parameters k, values of the log-likelihood function logL, and associated AIC, cAIC,
and BIC statistics. The largest values of the log-likelihood function and the smallest values of the information
criteria are displayed in red bold. Exponents of the values at each row indicate the rank of the model from 14
(the worse) to 1 (the best).
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5.2. Model confidence sets based on covariance and KLIC loss functions

The different models are compared using the model confidence set (MCS) approach introduced in

Hansen et al. (2003, 2011) with loss functions that involve the daily log-returns of the three indices

under consideration and the forecasts of the conditional covariance matrices associated to each of the

competing models.

Covariance loss functions. We use three different covariance loss functions in the implementation

of the MCS approach depending on the specific intraday extended information set used at the time of

forecasting, namely:

dCov
t|ti−1 :=

1

6

∑
j≤k=1,2,3

(
rj,trk,t − (Ht|ti−1)j,k

)2
, i = 1, 2, 3, (5.2)

where t ∈ {Test + 1, . . . , Test + Tout} and (Ht|ti−1)j,k are the (j, k)-entries of the corresponding model

dependent forecasts for the conditional covariance matrices at t. More specifically, when using the

scalar/Hadamard DCC model, we will consider the conditional covariance matrix Ht at t with respect

to the information set Ft−1.

Since the nonlinear state-space model is predictable and is not able to take advantage of intraday

information, we hence consider the covariance matrix Ht|t−1 associated to F∗t−1 and determined by

(4.4) and (4.5). In these two groups of models the values of the loss functions will have the same value

regardless the intraday moment of time and independently from the value of i = 1, 2, 3. Finally, for the

linear state-space model instance, we will use the three forecasts Ht|ti−1, i = 1, 2, 3, based on the three

different intraday extended information sets and provided in points (i)-(iii) in Section 4.

The MCS approach identifies, from a set of competing models, the subset of models that are statisti-

cally equivalent in terms of out-of-sample conditional covariance predictive ability and which outperform

all the other models at a considered significance level α for the so called equivalence test. We set this

significance level at 10% and 25%, and use 100 000 block bootstrap replicates with block length two in

order to obtain the distribution of the relevant test statistic under the null of equal predictive ability.

Tables 5.2 and 5.3 contain the MCS results associated to the values of the covariance loss functions

obtained in 36 different out-of-sample time intervals of the form {Test + 1, . . . , Test + 136 + 10k} with

k = {0, 1, . . . , 35}. The first 136 elements in the out-of-sample period are included in all these intervals

in order to ensure that there are enough values available for the bootstrapping process that is necessary

in the estimation of the distribution of the model equivalence test statistic. The date corresponding to

the end of this offset interval is October 18, 2013.

These tables report, for each model, the number of times that it is included in the model confidence
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Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

MCS dCov
F∗

(t−1)3

36 36 27 0 36 36 36 36 36 36 0 0 36 36

Sum p-vals 29.090 36.000 4.388 1.204 28.153 28.260 25.607 17.969 28.892 28.892 0.109 0.109 20.816 22.426

MCS dCov
F∗

t1

23 23 2 0 23 23 36 23 7 7 0 0 16 17

Sum p-vals 11.804 14.634 1.449 0.465 7.050 7.050 32.679 7.050 2.176 2.176 0.121 0.121 6.397 6.977

MCS dCov
F∗

t2

14 16 2 0 8 8 36 13 36 36 0 0 9 10

Sum p-vals 12.987 15.561 1.665 0.457 2.745 2.745 19.799 5.911 31.858 35.238 0.117 0.117 5.739 6.525

Table 5.2: Model confidence sets (MCS) constructed using the covariance based loss functions (5.2) for 36 different out-
of-sample lengths l(k), namely for l(k) = Test + 136 + 10k, k ∈ {0, 1, . . . , 35}. The letters ‘S’ and ‘H’ stand
for ‘Scalar’ and ‘Hadamard’, respectively. For each model and information set under consideration, the corre-
sponding value indicates the number of times that the model has been included in the MCS at a 90% confidence
level; the value underneath indicates the sum of all the MCS p-values obtained by a given model in the 36
tests. The best performing models (determined by the number of times included in the MCS) for the considered
information set are marked in bold red.

Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

MCS dCov
F∗

(t−1)3

36 36 0 0 36 36 36 30 36 36 0 0 26 30

Sum p-vals 29.023 36.000 4.399 1.202 28.136 28.136 25.618 17.965 28.828 28.828 0.107 0.107 20.808 22.366

MCS dCov
F∗

t1

13 13 0 0 7 7 36 7 0 0 0 0 7 7

Sum p-vals 11.821 14.641 1.449 0.467 7.072 7.072 32.688 7.072 2.179 2.179 0.120 0.120 6.420 7.005

MCS dCov
F∗

t2

13 15 0 0 0 0 36 7 36 36 0 0 7 7

Sum p-vals 12.989 15.566 1.650 0.453 2.728 2.728 19.816 5.909 31.856 35.238 0.116 0.116 5.722 6.508

Table 5.3: Model confidence sets (MCS) constructed using the covariance based loss functions (5.2) for 36 different out-
of-sample lengths l(k), namely for l(k) = Test + 136 + 10k, k ∈ {0, 1, . . . , 35}. The letters ‘S’ and ‘H’ stand
for ‘Scalar’ and ‘Hadamard’, respectively. For each model and information set under consideration, the corre-
sponding value indicates the number of times that model has been included in the MCS at a 75% confidence
level; the value underneath indicates the sum of all the MCS p-values obtained by a given model in the 36
tests. The best performing models (determined by the number of times included in the MCS) for the considered
information set are marked in bold red.
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set with the a significance level of 10% or 25%. The second figure represents the total sum of the 36

obtained MCS p-values corresponding to each model. These results show that:

(i) The group of Kalman-based linear models significantly outperforms the standard DCC models as

soon as the intraday information is taken into account.

(ii) The linear state-space Model 2 significantly outperforms other competing models as soon as the

intraday extended information sets are involved.

The supplementary material section contains the results of an analogous experiment with a shorter

estimation period that does not contain the high volatility events of the Fall 2008 period. In that

situation the empirical study shows that: first, the conclusion (i) above holds and, second, in (ii) it is

the linear state-space Model 1 that has the superior performance.

KLIC loss functions. We also implement the MCS approach using loss functions based on the

Kullback-Leibler Information Criterion (KLIC) Kullback and Leibler (1951). We recall that the KLIC

divergence DTest,t(φ‖ψ) of a density ψ that depends on the parameters θ with respect to another density

φ, is defined as:

DTest,t(φ‖ψ) =
1

t− Test

t∑
i=Test+1

ln

[
φi(υi)

ψi(υi;θ)

]
, t ∈ {Test + 1, . . . , Test + Tout} (5.3)

where φi(υi) is the real underlying conditional density associated to the data under consideration,

ψi(υi;θ) is the one coresponding to the competing model of interest, and υi stands in our case either

for the Kalman residuals, in the case of the state-space based models, or for the returns in the case of

the benchmark DCC models.

We use this information criterion in order to construct a loss function to evaluate the out-of-sample

density forecasting abilities of the considered models, that we subsequently use in the MCS context (see

Bao et al. (2006) and Banulescu et al. (2015)). Since the terms having to do with the real density φ(r)

are common to all the models and appear as an additive constant, we then disregard the numerator

in (5.3) at the time of constructing the KLIC loss functions. Additionally, in order to account for the

specific intraday extended information sets used at the time of forecasting, we use again three different

KLIC loss functions adapted to these different filtrations, namely:

dKLIC
t|ti−1 := −ln

[
1

(2π)3/2det(Ht|ti−1)1/2
exp

(
−1

2
υ>i (Ht|ti−1)−1υi

)]
, (5.4)

where t ∈ {Test+1, . . . , Test+Tout} and hij,t are the (i, j)-entries of the model dependent forecasts for the
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conditional covariance matrices at t explained above in the context of the covariance loss functions (5.2).

Table 5.4 contains the MCS results at significance levels 10% and 25% (they are identical) associated

to the values of the covariance loss functions obtained in the 36 different out-of-sample time intervals of

the form {Test + 1, . . . , Test + 136 + 10k} with k = {0, 1, . . . , 35}.

Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

MCS dKLIC
F∗

(t−1)3

0 0 0 0 0 0 0 36 0 0 0 0 0 0

Sum p-vals 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36.000 0.000 0.000 0.000 0.000 0.000 0.000

MCS dKLIC
F∗

t1

0 0 0 0 0 0 0 36 0 0 0 0 0 0

Sum p-vals 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36.000 0.000 0.000 0.000 0.000 0.000 0.000

MCS dKLIC
F∗

t2

0 0 0 0 0 0 0 36 0 0 0 0 0 0

Sum p-vals 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.4: Model confidence sets (MCS) constructed using the KLIC loss functions (5.4), for 36 different out-of-sample
lengths l(k), namely for l(k) = Test + 136 + 10k, k ∈ {0, 1, . . . , 35}. The letters ‘S’ and ‘H’ stand for ‘Scalar’
and ‘Hadamard’, respectively. For each model and information set under consideration the corresponding value
indicates the number of times that model has been included in the MCS at the 90% and 75% confidence levels
(they are identical); the value underneath indicates the sum of all the MCS p-values obtained by a given model
in the 36 tests. The best performing models for the considered information set are marked in bold red.

The results are robust with respect to the number of the out-of-sample observations and as for the

previous MCS experiment we can conclude that:

(i) The group of Kalman-based linear models significantly outperform the standard DCC benchmarks

regardless the information sets involved.

(ii) The linear state-space Model 2 significantly outperforms other competing models regardless the in-

formation sets involved.

The supplementary material section contains the results of an analogous experiment with a shorter esti-

mation period that does not contain the high volatility events of the Fall 2008 period. In that situation

the empirical study shows that: first, the conclusion (i) above holds and, second, the linear state-space

Model 1 and Model 2 significantly outperform other competing models regardless the information sets

involved.

6. Conclusions

In this work we have used linear and nonlinear state-space models that extract global stochastic

financial trends out of asynchronous daily data. These models are specifically constructed to take
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advantage of the intraday arrival of closing information coming from different international markets

located in lagged time zones in order to enhance volatility and correlation forecasting performance.

The state-space models considered incorporate nonlinearities at various levels capable of capturing

the heteroscedasticity that global trends empirically exhibit. This feature is of much importance since

correlation forecasting is the main application developed. The identification of these models, as well as

the constraints that their parameters need to satisfy in order to exhibit stationary solutions and positive

semidefinite conditional correlation matrices, are carefully studied.

A volatility forecasting empirical study using the adjusted closing values of three major indices

(NIKKEI 225, FTSE 100, and S&P 500) has been conducted using the models introduced in the the-

oretical part and two different estimation periods. In this experiment, we use the model confidence

set (MCS) approach of Hansen et al. (2003, 2011) implemented with loss functions constructed with

the conditional covariance matrices implied by the different models under consideration. The results

show that the proposed Kalman-based forecasting scheme exhibits statistically significant performance

improvements when compared to the use of standard multivariate parametric correlation models (scalar

and non-scalar DCC).
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Appendix A. Supplementary material

This section contains technical appendices that are meant for publication as a companion to the

paper.

Appendix A.1. Notation and conventions

Column vectors are denoted by a bold lower case symbol like v and v> indicates its transpose. Given

a vector v ∈ Rn, we denote its components by vi, with i ∈ {1, . . . , n}; we also write v = (vi)i∈{1,...,n}.

The symbols in,0n ∈ Rn stand for the vectors of length n consisting of ones and zeros, respectively. We

denote by Mn,m the space of real n×m matrices with m,n ∈ N. When n = m, we use the symbols Mn

and Dn to refer to the space of square and diagonal matrices of order n, respectively. Given a matrix

A ∈Mn,m, we denote its components by Aij and we write A = (Aij), with i ∈ {1, . . . , n}, j ∈ {1, . . .m}.

We use Sn to denote the subspace Sn ⊂Mn of symmetric matrices:

Sn =
{
A ∈Mn | A> = A

}
,

and we use S+n (respectively S−n ) to refer to the cone S+n ⊂ Sn (respectively S−n ⊂ Sn) of positive

(respectively negative) semidefinite matrices. When A ∈ S+n (respectively, A ∈ S−n ) we write A � 0

(respectively, A � 0). The symbol In ∈ Dn denotes the identity matrix. Given two matrices A,B ∈

Mn,m, we denote by A�B ∈Mn,m their elementwise multiplication matrix or Hadamard product, that

is:

(A�B)ij := AijBij for all i ∈ {1, . . . , n} , j ∈ {1, . . . ,m} . (A.1)

We denote as Diag the operator Diag : Mn −→ Dn that sets equal to zero all the components of a square

matrix except for those that are on the main diagonal. The operator diag : Rn −→ Dn takes a given

vector and constructs a diagonal matrix with its entries in the main diagonal.

Appendix A.2. Stationarity conditions for Model 1 in the nonlinear state-space setup

In order to provide sufficient conditions for the stationarity of the process, we rewrite (2.8)-(2.10) as

σ2
1,t = a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1,

σ2
2,t = (a2 + a1δ2) + δ1δ2σ

2
3,t−1 + γ1δ2ε

2
3,t−1,

σ2
3,t = (a3 + a2δ3 + α1δ2δ3) + δ1δ2δ3σ

2
3,t−1 + γ1δ2δ3ε

2
3,t−1.
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Consider these relations as those defining a VEC model (see Bollerslev et al. (1988)), then stationarity

can be ensured by imposing that the spectral radius of the matrix A given by

A :=


0 0 δ1 + γ1

0 0 δ2(δ1 + γ1)

0 0 δ2δ3(δ1 + γ1)


is smaller than one Gouriéroux (1997). It is easy to verify that this results in the inequality

δ2δ3(δ1 + γ1) < 1. (A.2)

Appendix A.3. Stationarity conditions for Model 2 in the nonlinear state-space setup

In order to find sufficient stationarity conditions, we proceed by rewriting Model 2 as

σ2
1,t =a1 + δ1σ

2
3,t−1 + γ1ε

2
3,t−1 + ρ1σ

2
1,t−1 + τ1ε

2
1,t−1,

σ2
2,t =(a2 + a1δ2) + δ1δ2σ

2
3,t−1 + γ1δ2ε

2
3,t−1 + ρ1δ2σ

2
1,t−1 + τ1δ2ε

2
1,t−1 + ρ2σ

2
2,t−1 + τ2ε

2
2,t−1,

σ2
3,t =(a3 + a2δ3 + a1δ2δ3) + (δ1δ2δ3 + ρ3)σ2

3,t−1 + (γ1δ2δ3 + τ3)ε23,t−1 + ρ1δ2δ3σ
2
1,t−1

+ τ1δ2δ3ε
2
1,t−1 + ρ2δ3σ

2
2,t−1 + τ2δ3ε

2
2,t−1.

Proceeding in the way analogous to Model 1 in Section Appendix A.2, we ensure stationarity by

requiring that the spectral radius ρ(A) of the matrix A defined by:

A :=


ρ1 + τ1 0 δ1 + γ1

δ2(ρ1 + τ1) ρ2 + τ2 δ2(δ1 + γ1)

δ2δ3(ρ1 + τ1) δ3(ρ2 + τ2) δ2δ3(δ1 + γ1) + τ3 + ρ3

 ,

is smaller than one. Since in this case the general expression of the eigenvalues of A is very convoluted,

we take advantage of the fact that for any matrix norm || · || the inequality ρ(A) ≤ ||A|| is satisfied and

hence it suffices to require that ||A|| < 1 to ensure that ρ(A) < 1. We implement this condition by using

the so called maximum column and row sum norms (see Horn and Johnson (2013)). In the case of the

maximum column sum norm, the inequality ||A|| < 1 amounts to the following three conditions


(ρ1 + τ1)(1 + δ2(1 + δ3)) < 1, (A.3a)

(ρ2 + τ2)(1 + δ2(1 + δ3)) < 1, (A.3b)

(δ1 + γ1)(1 + δ2(1 + δ3)) + τ3 + ρ3 < 1, (A.3c)
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while the use of the maximum row sum norm results in three other different conditions, namely,


δ1 + γ1 + ρ1 + τ1 < 1, (A.4a)

δ2(δ1 + γ1 + ρ1 + τ1) + ρ2 + τ2 < 1, (A.4b)

δ2δ3(δ1 + γ1 + ρ1 + τ1) + δ3(ρ2 + τ2) + τ3 + ρ3 < 1. (A.4c)

Any of these two sets of inequalities may be used as parameter constraints at the time of model estimation

in order to ensure stationarity. Nevertheless, imposing different parameter constraints may obviously

produce different estimation results.

Appendix A.4. Proof of Proposition 2.1

Let A be an element of the general linear group of order five, that is, A ∈ GL5(R). Consider the

model prescription (2.5a)-(2.5b) and transform it according to the following prescription. First, replace

the parameter B by BA−1A in (2.5a) and second, apply A to both sides of (2.5b). This yields:

{
rt = α+BA−1Aet + ut, (A.5a)

Aet = ATet−1 +ARvt−1. (A.5b)

The model (2.5a)-(2.5b) remains invariant under this transformation if the following conditions hold:

(i) BA−1 has the same entries structure as B.

(ii) The matrices A and T commute, that is, AT = TA.

(iii) Q̄ := AQA> with Q := RR> is a matrix of the same entries structure as Q, namely, Q̄ =

diag(σ̄2
v,1, σ̄

2
v,2, σ̄

2
v,3, 0, 0), for some σ̄2

v,1, σ̄
2
v,2, σ̄

2
v,3 ∈ R+.

Indeed, under these hypotheses, the transformed equations (A.5a)-(A.5b) become:

{
rt = α+ (BA−1)(Aet) + ut, (A.6a)

(Aet) = T (Aet−1) +ARvt−1. (A.6b)

It is hence easy to see that the model (A.6a)-(A.6b) has the same structure as the original model (2.5a)-

(2.5b) with the variables et replaced by (Aet), provided that BA−1 has the same entries structure as B

and that the covariance matrix Σ(v̄t) of v̄t := ARvt is of the form Q̄ = diag(σ̄2
v,1, σ̄

2
v,2, σ̄

2
v,3, 0, 0), with

some σ̄v,1, σ̄v,2, σ̄v,3 ∈ R+. This covariance matrix equals

Σ(v̄t) := E
[
v̄tv̄t

>] = E
[
ARvtv

>
t R
>A>

]
= ARR>A> = AQA> (A.7)
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with Q := RR>.

We first study what the implications that conditions (i)-(iii) have in the structure of A ∈ GL5(R).

First, by point (iii) suppose that A ∈ GL5(R) is such that for any σv,1, σv,2, σv,3 ∈ R+ there exist

σ̄v,1, σ̄v,2, σ̄v,3 ∈ R+ such that

A ·



σ2
v,1 0 0 0 0

0 σ2
v,2 0 0 0

0 0 σ2
v,3 0 0

0 0 0 0 0

0 0 0 0 0


·A> =



σ̄2
v,1 0 0 0 0

0 σ̄2
v,2 0 0 0

0 0 σ̄2
v,3 0 0

0 0 0 0 0

0 0 0 0 0


. (A.8)

Define now Σv :=


σ2
v,1 0 0

0 σ2
v,2 0

0 0 σ2
v,3

, Σ̄v :=


σ̄2
v,1 0 0

0 σ̄2
v,2 0

0 0 σ̄2
v,3

, and let K,P ∈ M3, C,W ∈

M3,2, D,X ∈ M2,3, E,U ∈ M2 be such that A =

 K C

D E

, A> =

 K> D>

C> E>

, and A−1 = P W

X U

. Condition (A.8), namely, AQA> = Q̄ is equivalent to A−1AQA> = A−1Q̄ or to QA> =

A−1Q̄ which in the notation that we just introduced amounts to Σv 0

0 0

 K> D>

C> E>

 =

 P W

X U

 Σ̄v 0

0 0

 . (A.9)

Expression (A.9) is equivalent to the following three conditions:

ΣvK
> = P Σ̄v, (A.10)

ΣvD
> = 0, (A.11)

XΣ̄v = 0. (A.12)

We continue by noticing that since Σv and Σ̄v are invertible, the expressions (A.11) and (A.12) amount

to D> = 0 and X = 0, respectively. This shows that A =

 K C

0 E

 and A−1 =

 P W

0 U

. We
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now impose the condition (ii), that is, AT = TA:

 K C

0 E

 0 0

M 0

 =

 0 0

M 0

 K C

0 E

 (A.13)

with M :=

 0 1 0

0 0 1

. This relation implies that

CM = 0, (A.14)

EM = MK, (A.15)

0 = MC. (A.16)

The expressions (A.14) and (A.16) imply that C = 0, which yields that

A =

 K 0

0 E

 . (A.17)

As A is by definition invertible, in view of (A.17) so are the submatrices K and E, and hence in the

block structure of A−1 we can set W = 0, P = K−1, and U = E−1, respectively, that is,

A−1 =

 K−1 0

0 E−1

 . (A.18)

At the same time it is easy to verify that the relation (A.15) implies that

K =


k11 k12 k13

0

E0

 . (A.19)

Let now denote by k∗ij and by e∗ij with i, j ∈ {1, 2, 3} the generic entries of the matrices K−1 and E−1,

respectively. We may hence write by (A.19) that

K−1 =


1

k11
k∗12 k∗13

0

E−10

 =


1

k11
k∗12 k∗13

0 e∗11 e∗12

0 e∗21 e∗22

 . (A.20)
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We now use the fact that condition (i) requires that the matrix BA−1 has the same structure as B,

that is, there exist some β̄1, β̄2, β̄3 ∈ R such that

BA−1 =


β̄1 0 0 β̄1 β̄1

β̄2 β̄2 0 0 β̄2

β̄3 β̄3 β̄3 0 0

 . (A.21)

We first partition the matrix B and write it as B := (B1|B2), with

B1 =


β1 0 0

β2 β2 0

β3 β3 β3

 , B2 =


β1 β1

0 β2

0 0

 . (A.22)

We now use (A.18), (A.22) and write

BA−1 = (B1|B2) ·

 K−1 0

0 E−1

 = (B1K
−1|B2E

−1)

which by (A.21) requires both


β1 0 0

β2 β2 0

β3 β3 β3

 ·


1

k11
k∗12 k∗13

0 e∗11 e∗12

0 e∗21 e∗22

 =


β̄1 0 0

β̄2 β̄2 0

β̄3 β̄3 β̄3

 (A.23)

and 
β1 β1

0 β2

0 0


 e∗11 e∗12

e∗21 e∗22

 =


β̄1 β̄1

0 β̄2

0 0

 . (A.24)

The relations implied by the matrix equation (A.23) for the entries (1,2), (1,3), and (2,3) yield that

k∗12 = 0, k∗13 = 0, and e∗12 = 0, respectively. At the same time, the relation for the component (2,1) of the

matrix equation (A.24) yields that e∗21 = 0. Consequently, both K−1 and E−1 are diagonal matrices.

Finally, the relation (A.23) computed for the corresponding diagonal elements of K−1 implies that that

e∗11 =
1

k11
, e∗22 =

1

k11
and we can hence write that

K = λI3, λ ∈ R.
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Consequently, by (A.19)

E = λI2,

which automatically guarantees by (A.17) that A = λI5, necessarily. This implies that the matrix B in

the model (2.5a)-(2.5b) is defined up to multiplication by a homothety. It is hence sufficient to impose

one of the following two constraints so that the model is well identified: (i) one of the elements βi,

i ∈ {1, 2, 3}, is set equal to some constant number, (ii) one of the variances σ2
v,i, i ∈ {1, 2, 3} is set equal

to an arbitrary positive constant number. �

Appendix A.5. Proof of Proposition 3.1

Proof of part (i). The recursion that defines the tvGARCH(1,1) model in (3.11) implies that (see for

example formula (2.2) in Ambroževičit and Klivečka (2008)):

σ2
ti =

∞∑
j=0

ati−j

j∏
k=1

(
γti−k+1v

2
ti−k + δti−k+1

)
=

∞∑
j=0

ati−j [btibti−1 · · · bti−j+1] , (A.25)

where bti−k+1 :=
(
γti−k+1v

2
ti−k + δti−k+1

)
. We notice that the process {bti} is made of positive inde-

pendent random variables. Moreover, by the Cauchy rule for series with non-negative terms, expres-

sion (A.25) converges if

λ := lim
j→∞

[btibti−1 · · · bti−j+1]
1/j

< 1.

We therefore compute:

lim
j→∞

[btibti−1 · · · bti−j+1]
1/j

= lim
j→∞

exp

[
1

j

j∑
k=1

log (bti−k+1)

]
= exp lim

j→∞

[
1

j

j∑
k=1

log (bti−k+1)

]

= exp
1

3

3∑
l=1

E
[
log
(
γlv

2
t + δl

)]
≤ exp

1

3

3∑
l=1

log
(
E
[(
γlv

2
t + δl

)])
(A.26)

= [(δ1 + γ1)(δ2 + γ2)(δ3 + γ3)]
1/3

, (A.27)

where the first equality in (A.26) follows from the strong law of large numbers and the relation that

follows it is a consequence of Jensen’s inequality. The inequality in the statement implies hence by (A.27)

that λ := lim
j→∞

[btibti−1 · · · bti−j+1]
1/j

< 1. A strategy mimicking, for example, the proof of Theorem 2.1

in Francq and Zakoian (2010), shows that in that situation model 1 has a unique stationary solution.

Proof of part (ii). By Theorem 2.4 in Francq and Zakoian (2010), it suffices to show that the top

Lyapunov exponent γ of the sequence {Ati} is smaller than zero. By Theorem 2.3 in Francq and Zakoian
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(2010):

γ = lim
ti→∞

1

ti
E [log ‖AtiAti−1 · · ·A1‖] ,

with ‖ · ‖ any matrix norm. We now use the norm ‖A‖ =
∑

i,j |aij | and notice that if all the elements

of A are positive then

E [‖A‖] = ‖E [A] ‖. (A.28)

Consequently,

γ = lim
ti→∞

1

ti
E [log ‖AtiAti−1 · · ·A1‖] ≤ lim

ti→∞

1

ti
log (E [‖AtiAti−1 · · ·A1‖]) (A.29)

= lim
ti→∞

1

ti
log (‖E [AtiAti−1 · · ·A1] ‖) = lim

ti→∞

1

ti
log (‖E [Ati ] E [Ati−1] · · ·E [A1] ‖) (A.30)

=
1

3
lim
t→∞

1

t
log
(
‖A3A2A1‖t

)
=

1

3
log (ρ(A3A2A1)) = log

(
ρ(A3A2A1)1/3

)
. (A.31)

The relation in (A.29) follows from Jensen’s inequality, the first equality in (A.30) is a consequence

of (A.28) and the second one of the independence of the elements in the process {Ati}. Finally, in (A.31)

we use Gelfand’s formula for the characterization of the spectral radius of a matrix. The inequality

γ ≤ log
(
ρ(A3A2A1)1/3

)
that we just proved guarantees that the condition in the statement ensures

that log
(
ρ(A3A2A1)1/3

)
< 0 and hence γ < 0, as required.

In both cases, the arguments that we provided show that the unconditional variance E
[
σ2
ti

]
depends

only on i and hence establishes the periodic stationarity claimed in the statement. �

Appendix A.6. Empirical performance of the GST-based volatility forecasting schemes using a smaller

estimation sample

In this appendix we illustrate the robustness of the results obtained in the empirical study in Section 5

by performing a similar analysis based on the same dataset but using a shorter estimation period

(January 5, 1996 – December 4, 2006) that does not contain the volatility events in the Fall 2008. The

out-of-sample study in that case comprises the entire Great Recession (December 5, 2006 – April 1,

2015). This choice yields a dataset with a length of T := 4581 observations and for which Test := 2600

and Tout := 1981.

The study follows the same scheme as the one in Section 5. In particular, we consider the same

competing models and the same loss functions at the time of implementing the MCS strategy. In the case

of the covariance loss functions (5.2), the results of the corresponding MCS comparison are contained

in the Tables A.6 and A.7. These results correspond to the values of the covariance loss functions

obtained in 185 different out-of-sample time intervals of the form {Test + 1, . . . , Test + 141 + 10k} with ,
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Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

k 11 21 30 50 30 50 42 62 36 56 25 45 31 51
AIC -48891.3113 -48871.3214 -54918.555 -54878.417 -54901.166 -54860.668 -55320.411 -55280.412 -55094.393 -55054.524 -51076.049 -51043.5611 -51064.0410 -51031.5612

BIC -48826.8213 -48748.1914 -54742.664 -54585.257 -54725.266 -54567.498 -55074.151 -54916.882 -54883.313 -54726.175 -50929.469 -50779.7211 -50882.2810 -50732.5412

cAIC -48891.2113 -48870.9614 -54917.835 -54876.417 -54900.446 -54858.668 -55318.991 -55277.332 -55093.353 -55052.014 -51075.539 -51041.9411 -51063.2710 -51029.4812

logL 24456.6614 24456.6613 27489.285 27489.216 27480.587 27480.338 27702.201 27702.202 27583.204 27583.263 25563.0211 25566.789 25563.0212 25566.7810

Table A.5: Total number of model parameters k, values the log-likelihood function logL, and associated AIC, cAIC, and
BIC statistics. The largest values of the log-likelihood function and the smallest values of the information
criteria are displayed in red bold. Exponents of the values at each row indicate the rank of the model from 14
(the worse) to 1 (the best).

k = {0, 1, . . . , 184}. The first 141 elements in the out-of-sample period are included in all these intervals

in order to ensure that there are enough values available for the bootstrapping process that is necessary

in the estimation of the distribution of the model equivalence test statistic. The date corresponding to

the end of this offset interval is July 10, 2007.

Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

MCS dCov
F∗

(t−1)3

180 68 74 73 51 51 72 8 68 67 2 2 2 2

Sum p-vals 160.508 19.651 44.471 23.938 16.650 15.687 21.398 7.357 21.305 20.129 6.028 6.028 6.028 6.111

MCS dCov
F∗

t1

4 3 133 4 4 4 56 4 3 3 1 1 1 1

Sum p-vals 6.942 6.863 132.809 7.138 6.981 6.981 59.329 6.981 6.949 6.902 6.413 6.413 6.413 6.413

MCS dCov
F∗

t2

5 4 178 5 5 5 11 5 6 5 2 2 2 2

Sum p-vals 6.891 6.784 176.400 7.143 6.923 6.923 13.111 6.923 9.661 7.029 6.351 6.351 6.351 6.351

Table A.6: Model confidence sets (MCS) constructed using the covariance based loss functions (5.2) for 185 different
out-of-sample lengths l(k), namely for l(k) = Test + 141 + 10k, k ∈ {0, 1, . . . , 184}. The letters ‘S’ and ‘H’
stand for ‘Scalar’ and ‘Hadamard’, respectively. For each model and information set under consideration
the corresponding value indicates the number of times that model has been included in the MCS at a 90%
confidence level; the value underneath indicates the sum of all the MCS p-values obtained by a given model in
the 185 tests. The best performing models (determined by the number of times included in the MCS) for the
considered information set are marked in bold red.

The results corresponding to the KLIC loss functions (5.4) are contained in Table A.8 for the sig-

nificance levels 10% and 25% (they are identical). These values are obtained out of 185 different

out-of-sample time intervals of the form {Test + 1, . . . , Test + 141 + 10k} with k = {0, 1, . . . , 184}. As the

previous MCS experiment constructed using covariance based loss functions already showed, the fore-

casting approaches based on the linear state-space Models 1 and 2 significantly outperform the standard

DCC models in this context. The results that we just obtained show the robustness of the study con-

ducted in Section 5.2 with respect to the choice of estimation period and the number of the out-of-sample

observations.
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Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

MCS dCov
F∗

(t−1)3

161 8 33 15 5 5 12 1 13 11 0 0 0 0

Sum p-vals 160.519 19.676 44.477 23.940 16.679 15.717 21.411 7.385 21.336 20.142 6.045 6.045 6.045 6.128

MCS dCov
F∗

t1

0 0 131 0 0 0 54 0 0 0 0 0 0 0

Sum p-vals 6.940 6.858 132.811 7.135 6.980 6.980 59.323 6.980 6.947 6.898 6.406 6.406 6.406 6.406

MCS dCov
F∗

t2

0 0 176 0 0 0 6 0 3 0 0 0 0 0

Sum p-vals 6.890 6.784 176.399 7.143 6.922 6.922 13.112 6.922 9.659 7.026 6.353 6.353 6.353 6.353

Table A.7: Model confidence sets (MCS) constructed using the covariance based loss functions (5.2) for 185 different
out-of-sample lengths l(k), namely for l(k) = Test + 141 + 10k, k ∈ {0, 1, . . . , 184}. The letters ‘S’ and ‘H’
stand for ‘Scalar’ and ‘Hadamard’, respectively. For each model and information set under consideration
the corresponding value indicates the number of times that model has been included in the MCS at a 75%
confidence level; the value underneath indicates the sum of all the MCS p-values obtained by a given model in
the 185 tests. The best performing models (determined by the number of times included in the MCS) for the
considered information set are marked in bold red.

Linear Nonlinear
state-space models state-space models

DCC models Model 1 for {ε̂t} Model 2 for {ε̂t} Model 1 for {ε̂t} Model 2 for {ε̂t}
Model 1 for {ût} GARCH for {ût} Model 2 for {ût} GARCH for {ût} GARCH for {ût} GARCH for {ût}

DCC models S H S H S H S H S H S H S H

MCS dKLIC
F∗

(t−1)3

0 0 0 116 0 0 0 70 0 0 0 0 0 0

Sum p-vals 0.000 0.000 0.000 116.000 0.000 0.000 0.000 70.000 0.000 0.000 0.000 0.000 0.000 0.000

MCS dKLIC
F∗

t1

0 0 0 27 0 0 0 158 0 0 0 0 0 0

Sum p-vals 0.000 0.000 0.000 27.000 0.000 0.000 0.000 158.000 0.000 0.000 0.000 0.000 0.000 0.000

MCS dKLIC
F∗

t2

0 0 0 0 0 0 0 185 0 0 0 0 0 0

Sum p-vals 0.000 0.000 0.000 0.000 0.000 0.000 0.000 185.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.8: Model confidence sets (MCS) constructed using the KLIC loss functions (5.4), for 185 different out-of-sample
lengths l(k), namely for l(k) = Test + 141 + 10k, k ∈ {0, 1, . . . , 184}. The letters ‘S’ and ‘H’ stand for ‘Scalar’
and ‘Hadamard’, respectively. For each model and information set under consideration the corresponding value
indicates the number of times that model has been included in the MCS at the 90% and 75% confidence levels
(they are identical); the value underneath indicates the sum of all the MCS p-values obtained by a given model
in the 185 tests. The best performing models for the considered information set are marked in bold red.
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