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Abstract

This work studies the symmetries, the associated momentum map, and relative equilibria of a
mechanical system consisting of a small axisymmetric magnetic body-dipole in an also axisymmet-
ric external magnetic field that additionally exhibits a mirror symmetry; we call this system the
“orbitron”. We study the nonlinear stability of a branch of equatorial relative equilibria using the
energy-momentum method and we provide sufficient conditions for their T2–stability that complete
partial stability relations already existing in the literature. These stability prescriptions are explic-
itly written down in terms of some of the field parameters, which can be used in the design of stable
solutions. We propose new linear methods to determine instability regions in the context of rela-
tive equilibria that allow us to conclude the sharpness of some of the nonlinear stability conditions
obtained.

Key Words: Hamiltonian systems with symmetry, momentum maps, relative equilibrium, magnetic
systems, orbitron, generalized orbitron, nonlinear stability/instability.

1 Introduction

Many physical systems exhibit symmetries. A number of techniques have been developed during the last
two centuries to take advantage of the conservation laws that are usually associated to these invariance
properties to simplify or reduce those systems in order to make easier the computation of their solu-
tions. The presence of symmetries also creates natural dynamical features that generalize distinguished
solutions of their non-symmetric counterparts like the so called relative equilibria or relative periodic
orbits; relative equilibria are solutions of a symmetric system that coincide with one-parameter group
orbits of the action that leaves that system invariant. The justification of this denomination lies in
the fact that relative equilibria are equilibria for the reduced Hamiltonian system [MW74] constructed
with the momentum map associated to the action, provided that this object exists. Regarding the
stability of these solutions, the degeneracies caused by the presence of symmetries in a system cause
drift phenomena that make non-evident the selection of a stability definition. A very reasonable choice
is the concept of stability relative to a subgroup introduced in [Pat92, Pat95b] for which a number
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of energy-momentum based sufficient conditions have been formulated in the literature under different
assumptions and levels of generality on the group actions involved and the momentum values at which
the relative equilibrium in question takes place [Pat92, Pat95a, Pat95b, MRS88, Mon97b, Mon97a,
MR99, OR99c, LS98, OR99a, OR99b, Ort98, RWL02, PRW04, OR04, MRO11]. These methods have
been used, for example, in the study of the stability of relative equilibria present in different config-
urations of rigid bodies [LRSM92, Lew98, Pat95b], Riemann ellipsoids [FL01, ROSD08], underwater
vehicles [Leo97, LM97], vortices [PM98, LP02, LMR01, LPMR11], and molecules [MR99].

In this paper we use these methods to establish sufficient conditions for the stability of various
branches of relative equilibria present in a mechanical system consisting of a small axisymmetric mag-
netic body-dipole in an also axisymmetric external magnetic field that additionally exhibits a mir-
ror symmetry. When the external field is created by two magnetic poles modeled by two distant
“charges” [Smy39, Koz81] we call this system the standard orbitron; the setup involving arbitrary
external fields exhibiting the above mentioned symmetries will be referred to as the generalized or-
bitron. The generic term orbitron will refer simultaneously to both the standard and the generalized
orbitrons. This problem has been studied for a long time already: the model was introduced in the 1970s
and the first theoretical and experimental results were presented in [Koz74, Koz81]. A first stability
study of the regular branch of the equatorial relative equilibria of the standard orbitron is carried out
in [Zub14]. These works focus mainly on the physical description of the system and do not contain a
geometrically rigorous formulation of its phase space and symmetries. In the following pages we show
how in this case the methods of geometric mechanics and symmetry-based stability analysis are capable
of handling the study of singular relative equilibria both for the standard and the generalized orbitron
and provide a precise interpretation of the obtained stability results (stability modulo a subgroup). Ad-
ditionally, we complete the stability analysis by introducing new linear methods to assess the sharpness
of the stability conditions.

Geometric mechanical methods have already been applied in the context of two systems involv-
ing spatially extended magnetic bodies, namely the levitron and the magnetic dumbbells. The levit-
ron [Har83] is a magnetic spinning top in the presence of gravitation that can levitate in the air repelled
by a base magnet. The stability of this dynamical phenomenon has been explored with the tools of
geometric mechanics in [DE99, Dul04, KM06]. Unfortunately, in this system there are not sufficient
conserved quantities available to conclude nonlinear stability using energy-momentum methods and only
linear stability estimates are available. The magnetic dumbbells [Koz74] are two axisymmetric mag-
netic rigid bodies in space interacting contactlessly with each other; this system exhibits stable regular
relative equilibria for which stability conditions have been found using the energy-momentum method
in [Zub12].

The positive stability results obtained in this paper for dynamic solutions of the orbitron lead us
to believe that other similar configurations that have been experimentally observed to be stable could
be rigorously proved to have this property. We plan to tackle these questions with methods similar to
those put at work in this paper for the orbitron in forthcoming publications.

The paper has been written using a self-contained and tutorial approach. Its structure is organized
as follows: in Section 2 we present the Hamiltonian description of the orbitron by including a detailed
geometric description of its phase space, equations of motion, symmetries, and associated momentum
map. Section 3 contains a characterization of the relative equilibria of the orbitron that is obtained out
of the critical points of the augmented Hamiltonian, constructed using the momentum map associated
to the toral symmetry of this system spelled out in the preceding section. Section 4 is dedicated to
the stability analysis of two branches of equatorial relative equilibria introduced in Section 3. One of
these branches is singular, in the sense that it exhibits nontrivial isotropy group, and the other one is
regular. The stability study is carried out for both the standard and the generalized orbitrons using
the energy–momentum method, which yields in this case a set of conditions whose joint satisfaction
is sufficient for the toral stability of the regular relative equilibria. Concerning the singular relative
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equilibria, none of these solutions can be proved to be stable using the energy–momentum method for
the standard orbitron, while in the generalized case we are able to specify sufficient conditions involving
both the design parameters of the external magnetic field and the dynamical features of the system that
guarantee its nonlinear stability. In the second part of Section 4 we introduce new linear methods to
assess the sharpness of the stability conditions; more specifically, we show that the spectral instability of
a natural linearized Hamiltonian vector field that can be associated to any relative equilibrium, ensures
its nonlinear instability. This result is very instrumental in our setup since it allows us, for example,
to prove the nonlinear instability of the singular branch of relative equilibria of the standard orbitron
and the sharpness of some of the nonlinear stability conditions obtained in the regular case. In order to
improve the readability of the paper, most proofs of the results in the paper and a number of technical
details about the geometry of the system that are used in those proofs, have been included in appendices
at the end of the paper (Section 5).

Acknowledgments: We thank two anonymous referees for many thoughtful remarks that have sig-
nificantly improved the work presented in this paper. The authors thank the Fields Institute and the
organizers of the Marsden Memorial Program on Geometry, Mechanics, and Dynamics that made possi-
ble the collaboration that lead to this work. LG acknowledges financial support from the Faculty for the
Future Program of the Schlumberger Foundation. LG and JPO acknowledge partial financial support
of the Région de Franche-Comté (Convention 2013C-5493).

2 The orbitron

The standard orbitron is a a small axisymmetric magnetized rigid body (for example a small permanent
magnet or a current-carrying loop) with magnetic moment µm, in the permanent magnetic field created
by two fixed magnetic poles modeled by opposite charges placed at distance h [Smy39, Koz81] in the
absence of gravity (see Figure 1); in this definition the adjective “small” refers to the size of the body in
comparison with the distance 2h between the magnetic poles. In this section we provide the Hamiltonian
description of this physical system.

Phase space. The configuration space of the orbitron is the special Euclidean group in three dimensions
SE(3) = SO(3)× R3. The R3 factor of SE(3) accounts for the position of the center of mass in space
of the rigid body and SO(3) specifies its orientation with respect to a fixed initial frame. The orbitron
is a simple mechanical system in the sense that its Hamiltonian function is of the form kinetic plus
potential energy and that its phase space is the cotangent bundle T ∗SE(3) of its configuration space
SE(3) endowed with the canonical symplectic structure ω obtained as minus the differential of the
corresponding Liouville one form.

As the cotangent bundle of any Lie group, T ∗SE(3) can be right or left trivialized in order to obtain
the so called space or body coordinates, respectively (see Appendix 5.1), of the phase space. These
trivializations provide an identification of the bundle T ∗SE(3) with the product SE(3)× se(3)∗, where
the symbol se(3)∗ stands for the dual of the Lie algebra se(3) of SE(3).

In this paper we will work in body coordinates unless it is specified otherwise. Using this repre-
sentation, we denote by (A,x) the elements of SE(3) = SO(3) × R3 and by ((A,x), (Π,p)) those of
T ∗SE(3) ' SE(3) × se(3)∗ using body coordinates. The momenta (Π,p) ∈ R3 × R3 associated to
(A,x) ∈ SO(3)× R3 are the angular and linear momentum, respectively

Equations of motion. The Hamiltonian of the orbitron is given by the sum of the kinetic T (Π,p)
and the potential V (A,x) energy, that is,

H((A,x) , (Π,p)) = T (Π,p) + V (A,x) . (2.1)
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Figure 1: Schematic representation of the standard orbitron. The magnetic rigid body interacts exclusively with the fixed
magnetic poles represented in the picture. The opposite poles of each fixed magnet are assumed to be very
distant in comparison with the dimensions of the small rigid body; therefore, their influence is negligible and
they are hence not represented.

The expression of the kinetic energy is:

T (Π,p) :=
1

2
ΠT I−1

ref Π +
1

2M
‖p‖2, (2.2)

where M is the mass of the axisymmetric magnetic body and Iref the reference inertia tensor Iref =
diag(I1, I1, I3). The coincidence between the first two principal moments of inertia is related to an axial
symmetry with respect to the third coordinate that we assume in the body. The potential energy is
given by

V (A,x) := −µm〈B(x), Ae3〉, (2.3)

where x = (x, y, z) ∈ R3, µm ∈ R is the magnetic moment of the axisymmetric rigid body/dipole, and
B(x) is the strength of the magnetic field created by two magnetic poles/“charges” ±q placed at the
points (0, 0, h) and (0, 0,−h), h > 0, that is [Koz81],

B(x) =
µ0q

4π

(
x

D(x)
3/2
+

− x

D(x)
3/2
−

,
y

D(x)
3/2
+

− y

D(x)
3/2
−

,
z − h
D(x)

3/2
+

− z + h

D(x)
3/2
−

)
, (2.4)

with D(x)+ = x2 + y2 + (z − h)2, D(x)− = x2 + y2 + (z + h)2, and µ0 the magnetic permeability of
vacuum. A small axisymmetric magnetized rigid body subjected to a external magnetic field of the form
specified in (2.4) will be called a standard orbitron.

As we will see later on, most of the results that we present in this paper hold for systems with
external magnetic fields that share the following symmetry properties presented by B in (2.4), namely:
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(i) Equivariance with respect to rotations RZθS around the OZ axis:

B(RZθSx) = RZθSB(x) for θS ∈ R. (2.5)

(ii) Behavior with respect to the mirror transformation

(x, y, z) 7−→ (x, y,−z) (2.6)

according to the prescription

Bx(x, y, z) = −Bx(x, y,−z), (2.7)

By(x, y, z) = −By(x, y,−z), (2.8)

Bz(x, y, z) = Bz(x, y,−z). (2.9)

Consider an arbitrary magnetic field in the magnetostatic approximation in a domain free of other
magnetic sources that satisfies these symmetry properties. A small axisymmetric magnetized rigid
body subjected to the influence of such an external field will be called a generalized orbitron. The
generic term orbitron will refer simultaneously to both the standard and the generalized orbitrons.

The equations of motion of the orbitron are determined by Hamilton’s equations:

iXHω = dH, (2.10)

where i denotes the interior derivative, d is Cartan’s exterior derivative, and XH ∈ X(T ∗SE(3)) the
Hamiltonian vector field associated to H ∈ C∞(T ∗SE(3)). It can be proved (see Appendix 5.2) that in
body coordinates, Hamilton’s equations (2.10) amount to the set of differential equations:

Ȧ = AÎ−1
ref Π, (2.11)

ẋ =
1

M
Ap, (2.12)

Π̇ = Π× I−1
ref Π +A−1B(x)× e3, (2.13)

ṗ = p× I−1
ref Π + µmA

−1DB(x)TAe3. (2.14)

The symbol Î−1
ref Π stands for the antisymmetric matrix associated to the vector I−1

ref Π ∈ R3 via the Lie
algebra isomorphism ̂:

(
R3,×

)
−→ (so(3), [·, ·]) introduced in Appendix 5.1 and D for the differential.

Toral symmetry of the orbitron and associated momentum map. The axial symmetry of the
magnetic rigid body and the rotational spatial symmetry of the magnetic field created by the two poles
with respect to rotations around the OZ axis endow this system with a toral symmetry which is obtained
as the cotangent lift of the following action on the configuration space:

Φ : (T2 = S1 × S1)× SE(3) −→ SE(3)((
eiθS , eiθB

)
, (A,x)

)
7−→ (RZθSAR

Z
−θB , R

Z
θS

x),
(2.15)

where RZθ denotes the rotation matrix around the third axis by an angle θ. The first circle action
involving RZθS implies a spatial rotation of the center of mass of the body and the second one, given by

RZθB , accounts for a rotation of the magnetic body around its symmetry axis. In Appendix 5.3 we show
that the cotangent lift, also denoted by Φ, is a canonical symmetry given by

Φ : (T2 = S1 × S1)× T ∗SE(3) −→ T ∗SE(3)((
eiθS , eiθB

)
, ((A,x), (Π,p))

)
7−→ ((RθSAR−θB , RθSx), (RθBΠ, RθBp)) .

(2.16)
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This has an invariant momentum map associated J : T ∗SE(3) −→ R2:

J ((A,x) , (Π,p)) = (〈AΠ + x×Ap, e3〉,−〈Π, e3〉) . (2.17)

A straightforward computation shows that the Hamiltonian of the orbitron is invariant with respect to
the action (2.16), that is,

H ◦ Φ(eiθS ,eiθB ) = H, for any
(
eiθS , eiθB

)
∈ T2,

which, by Noether’s Theorem [AM78, Theorem 4.2.2], allows us to conclude that the level sets of the
momentum map (2.17) are preserved by the associated Hamiltonian dynamics, that is, if Ft is the flow
of the vector field XH then J ◦ Ft = J for any t.

The action (2.16) has two isotropy subgroups, namely, the identity {e} and the diagonal circle
K :=

{(
eiθ, eiθ

)
| eiθ ∈ S1

}
. The orbit type submanifold (T ∗SE(3))H is given by

(T ∗SE(3))K =
{((

RZθ , ae3

)
, (be3, ce3)

)
| θ, a, b, c ∈ R

}
, (2.18)

and (T ∗SE(3)){e} = T ∗SE(3) \ (T ∗SE(3))K . The bifurcation lemma (see for instance [OR04, Propo-

sition 4.5.12]) guarantees that the restriction of the momentum map to the regular isotropy type
T ∗SE(3){e} is a submersion and that it has rank one at points in the isotropy type (T ∗SE(3))K .

3 Relative equilibria of the orbitron

In this section we specify the equations that characterize the relative equilibria of the orbitron with
respect to its toral symmetry.

Relative equilibria: setup and background. Consider a vector field X ∈ X(M) on a manifold M
that is equivariant with respect to action of a Lie group G on it. We say that the point m ∈ M is
a relative equilibrium with velocity ξ ∈ g if the value of vector field at that point coincides with the
infinitesimal generator ξM associated to ξ, that is,

X(m) = ξM (m). (3.1)

The Lie algebra element ξ ∈ g is called the velocity of the relative equilibrium. This defining property
is equivalent to saying that the flow Ft associated to the vector field X at the point m ∈ M coincides
with the one-parameter Lie subgroup of G generated by ξ ∈ g, that is,

Ft(m) = exp tξ ·m, (3.2)

where exp is the Lie group exponential map exp : g→ G. In the Hamiltonian setup, relative equilibria
have a very convenient characterization that uses the critical points of a function instead of the equi-
libria of the vector field X − ξM , as in (3.1). Indeed, consider now a symmetric Hamiltonian system
(M,ω,H,G,J : M → g∗) and assume that the momentum map J is coadjoint equivariant; it can be
shown [AM78] that the point m ∈M is a relative equilibrium of the Hamiltonian vector field XH with
velocity ξ ∈ g if and only if

d
(
H − Jξ

)
(m) = 0, (3.3)

where Jξ := 〈J, ξ〉. The combination H − Jξ is usually referred to as the augmented Hamiltonian.
If the relative equilibrium m ∈ M is such that J(m) = µ ∈ g∗ and we denote its isotropy subgroup
with respect to the G action by Gm, the law of conservation of the isotropy [OR04] and Noether’s
Theorem imply [OR99c, Theorem 2.8] that ξ ∈ Lie

(
NGµ(Gm)

)
, where Gµ is the coadjoint isotropy of
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µ ∈ g∗ and NGµ(Gm) is the normalizer group of Gm in Gµ (note that Gm ⊂ Gµ necessarily due to the
equivariance of the momentum map). Finally, notice that the velocity of a relative equilibrium with
nontrivial isotropy is not uniquely defined; indeed, it is clear in (3.2) that if ξ ∈ g is a velocity for the
relative equilibrium m, then so is ξ + η for any η ∈ Lie (Gm).

Relative equilibria equations of the orbitron. The next proposition, proved in Appendix 5.4,
specifies the critical point equations (3.3) in the case of the orbitron and shows the existence of branches
of relative equilibria whose stability we will study in the next section.

Proposition 3.1 Consider the orbitron system introduced in Section 2 whose Hamiltonian function is
given by (2.1) and let z = ((A,x) , (Π,p)) ∈ T ∗SE(3). Then:

(i) The point z is a relative equilibrium of the orbitron with velocity (ξ1, ξ2) ∈ R2 with respect to the
toral symmetry introduced in Section 2 if and only if the following identities are satisfied:

µm [B(x)×Ae3] + ξ1 [Ap× (x× e3)−AΠ× e3] = 0, (3.4)

− µmDB(x)T (Ae3)− ξ1 (Ap× e3) = 0, (3.5)

I−1
ref Π + ξ2e3 − ξ1A−1e3 = 0, (3.6)

1

M
p− ξ1A−1 (e3 × x) = 0. (3.7)

(ii) Consider now A0 = RZθ0 , x0 = (x, y, 0), Π0 = I3 (ξ1 − ξ2) e3 and p0 = Mξ1A
−1
0 (−y, x, 0). The

point z0 = ((A0,x0) , (Π0,p0)) is a relative equilibrium of the standard orbitron with velocity
(ξ1, ξ2), where ξ2 is an arbitrary real number and ξ1 is either arbitrary when x0 = 0 or

ξ1 = ±
(
− 3hµmqµ0

2πMD(x0)5/2

)1/2

, (3.8)

when x0 6= 0. In view of the expression (3.8) for the spatial velocity ξ1, the existence of the latter
relative equilibrium is only guaranteed when µmq < 0.

(iii) The conclusions in the previous part also hold for the generalized orbitron. In this situation
Bz(x, y, z) = f(x2 + y2, z) for some f ∈ C∞(R2), and the spatial velocity ξ1 of the relative
equilibria with x0 6= 0 is given by

ξ1 = ±
(
− 2

M
µmf

′
1

)1/2

, (3.9)

where f ′1 =
∂f(v, z)

∂v

∣∣∣∣
v=x2+y2,z=0

. In view of the expression of the spatial velocity ξ1 in (3.9), the

existence of this relative equilibrium is only guaranteed when µmf
′
1 < 0.

The relative equilibria in these statements for which x0 6= 0 (respectively x0 = 0) have trivial (respectively
nontrivial K) isotropy and hence belong to the orbit type (T ∗SE(3)){e} (respectively (T ∗SE(3))K); we

will refer to them as regular relative equilibria (respectively singular relative equilibria).
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Figure 2: Regular (dipole in the right side of the picture) and singular (dipole at the origin) relative equilibria of the stan-
dard orbitron. The symbols rmin and rmax represent the stability region in configuration space determined by
the stability conditions in the expression (4.2). Theorem 4.5 shows that dipoles in a regular relative equilibrium
configuration that rotate around the origin with a radius in the interval [rmin, rmax] and with a body angular
velocity that satisfies (4.3) are stable. The singular relative equilibria are always unstable (see Theorem 4.14).

4 Stability analysis of the relative equilibria of the orbitron

In this section we study the stability properties of the branches of relative equilibria of the orbitron
introduced in the second and third parts of Proposition 3.1.

The energy–momentum method. As we already explained in the introduction, the degeneracies
present in symmetric systems cause various drift phenomena that complicate the selection of a stability
criterion. The most natural and fruitful choice is that of stability relative to a subgroup, introduced
in [Pat92] for relative equilibria and in [OR99a] for relative periodic orbits.

Definition 4.1 Let X ∈ X(M) be a G–equivariant vector field on the G–manifold M and let G′ be a
subgroup of G. A relative equilibrium m ∈ M of X, is called G′–stable, or stable modulo G′, if for
any G′–invariant open neighborhood V of the orbit G′ ·m, there is an open neighborhood U ⊂ V of m,
such that if Ft is the flow of the vector field X and u ∈ U , then Ft(u) ∈ V for all t ≥ 0.

In the Hamiltonian setup there exists a variety of Dirichlet type results that provide sufficient
conditions for the Gµ–stability of a given relative equilibrium, where µ ∈ g∗ is the momentum value in
which it is sitting and Gµ is its coadjoint isotropy. The reason why the subgroup Gµ arises naturally
is clear if we look at the stability problem from the symplectic reduction point of view; more explicitly,
consider a symmetric Hamiltonian system (M,ω,H,G,J : M → g∗) that exhibits a relative equilibrium
at the point m ∈M such that J(m) = µ. Suppose that the momentum map J is coadjoint equivariant
and that the coadjoint isotropy Gµ acts freely and properly on the momentum fiber J−1(µ); in these
conditions, the quotient space J−1(µ)/Gµ is naturally symplectic [Mey73, MW74] and the G-equivariant
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Hamiltonian vector field associated to H projects onto another Hamiltonian vector field in which the
relative equilibrium m becomes a standard equilibrium. The importance of this construction in our
context comes from the fact that the standard Lyapunov stability of the reduced equilibrium is equivalent
to the Gµ–stability of the relative equilibrium.

The following result, known as the energy–momentum method, provides a sufficient condition
for the Gµ–stability of a given relative equilibrium. This result has been introduced at different levels
of generality in [Pat92, OR99c, PRW04, MRO11].

Theorem 4.2 (Energy-momentum method) Let (M,ω,H) be a symplectic Hamiltonian system
with a symmetry given by the Lie group G acting properly on M with an associated coadjoint equiv-
ariant momentum map J : M → g∗. Let m ∈M be a relative equilibrium such that J(m) = µ ∈ g∗ and
assume that the coadjoint isotropy subgroup Gµ is compact. Let ξ ∈ LieNGµ(Gm) be a velocity of the
relative equilibrium. If the quadratic form

d2(H − Jξ)(m)|W×W (4.1)

is definite for some (and hence for any) subspace W such that

kerTmJ = W ⊕ Tm(Gµ ·m),

then m is a Gµ–stable relative equilibrium. If dimW = 0, then m is always a Gµ–stable relative
equilibrium. The quadratic form d2(H − Jξ)(m)|W×W , will be called the stability form of the relative
equilibrium m and W a stability space.

Remark 4.3 Even though we work exclusively in the Hamiltonian setup, this criterion has elaborate
counterparts in the Lagrangian side [SLM91, RO06].

Remark 4.4 The statement in Theorem 4.2 can be generalized to the context of Hamiltonian actions
on Poisson manifolds and can be stated so that one can take advantage of existing Casimirs or other
non-symmetry related conserved quantities in order to prove the stability of a given relative equilib-
rium [OR99b, Theorem 4.8]. More explicitly, if in the conditions of Theorem 4.2 there exists a set of
Gµ–invariant conserved quantities C1, . . . , Cn : M → R for which

d(H − Jξ + C1 + · · ·+ Cn)(m) = 0,

and
d2(H − Jξ + C1 + · · ·+ Cn)(m)|W×W

is definite for some (and hence for any) W such that

ker dC1(m) ∩ . . . ∩ ker dCn(m) ∩ kerTmJ = W ⊕ Tm(Gµ ·m),

then m is a Gµ–stable relative equilibrium.

Nonlinear stability of the orbitron relative equilibria. The application of the energy-momentum
method to the relative equilibria of the orbitron introduced in Proposition 3.1 makes possible the
determination of sizeable regions in parameter space for which those solutions are Gµ-stable (T2-stable
in this case). We spell this out in the statement of the following theorem whose proof is provided in the
Appendix 5.5.
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Theorem 4.5 Consider the relative equilibria introduced in Proposition 3.1. Then:

(i) The regular relative equilibria of the standard orbitron in part (ii) of Proposition 3.1, that is, those
for which x0 6= 0, are T2–stable whenever the following three inequalities are satisfied:

2

3
<
r2

h2
< 4, (4.2)

sign(ξ0
1)I3ξ2 < − | ξ0

1 |
(
I1 − I3 +

2

3
M

(r2 + h2)h2

3r2 − 2h2

)
, (4.3)

where r2 = ‖x0‖2, ξ0
1 = ±

(
− 3hµmqµ0

2πMD(x0)5/2

)1/2

, and µmq < 0.

The singular relative equilibria (x0 = 0) are always formally unstable, in the sense that the stability
form (4.1) exhibits a nontrivial signature.

(ii) The regular relative equilibria of the generalized orbitron in part (iii) of Proposition 3.1 are T2–
stable whenever the following conditions hold:

µmf
′
1 < 0, (4.4)

µm
(
2f ′1 + r2f ′′1

)
< 0, (4.5)

µmf
′′
2 < 0, (4.6)

sign(ξ0
1)I3ξ2 < −|ξ0

1 |
(

(I1 − I3) +
1

2
M

(
f0

f ′1
+ 4r2 f

′
1

f ′′2

))
, (4.7)

where r2 = ‖x0‖2, f ∈ C∞(R2) is the function such that Bz(x, y, z) = f(r2, z), f0 = f(r2, 0), f ′1 =

∂f(v, z)

∂v

∣∣∣∣
v=r2,z=0

, f ′′1 =
∂2f(v, z)

∂v2

∣∣∣∣
v=r2,z=0

, f ′′2 =
∂2f(v, z)

∂z2

∣∣∣∣
v=r2,z=0

, and ξ0
1 = ±

(
− 2

M
µmf

′
1

)1/2

.

The singular branch (x0 = 0) is T2–stable if the following conditions are satisfied:

µmf
′
1 < 0, (4.8)

µmf
′′
2 < 0, (4.9)

ξ2
1 < −

2

M
µmf

′
1, (4.10)

sign(ξ1)Π0 >
I1ξ

2
1 − µmf0

|ξ1|
, (4.11)

where Π0 = I3 (ξ1 − ξ2) and we use the same notation as above for f0, f ′1, and f ′′2 , replacing v = r2

by v = 0. When µmf0 < 0 and
f0

f ′1
<

2

M
I1, the conditions (4.10) and (4.11) can be replaced by

the following single ξ1–independent optimal condition:

|Π0| > 2
√
−µmf0I1. (4.12)

This optimal condition is achieved by using the spatial velocities ξ1 = ±
(
− 1

I1
µmf0

)1/2

; the

positive (respectively negative) sign for the velocity corresponds to positive (respectively negative)
values of Π0.
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Remark 4.6 The right inequality in (4.2) appears already in Kozorez’s [Koz81] study of the standard
orbitron but it does not ensure by itself the nonlinear stability of this symmetric configuration. We will
refer to this inequality as the Kozorez condition. The extension of this inequality in the context of
the generalized orbitron is given by (4.5). The stability conditions for the regular branch of relative
equilibria of the standard orbitron have also been obtained in [Zub14].

Remark 4.7 The formal instability of the singular branch of the standard orbitron is not informative
about its actual nonlinear stability or instability. This point is determined via a complementary spectral
stability analysis of the linearized system that we carry out later on in Theorem 4.14 and that allows
us to conclude the nonlinear instability of this singular branch of relative equilibria.

Remark 4.8 The proof of the theorem presented in Appendix 5.5 consists of studying the definiteness
of the stability form (4.1) introduced in Theorem 4.2. A quick dimension count shows that the stabil-
ity spaces corresponding to the regular and singular branches of relative equilibria are eight and ten
dimensional, respectively. The need of determining the sign of the eigenvalues of stability forms in high
dimensions like ours has motivated the introduction in the literature of various block diagonalizations
for it based on arguments of dynamic [SLM91, RO06] or kinematic [OR99c] nature. An elementary
but important observation that we point out in the proof of this theorem is that in order to ensure
the stability of the relative equilibrium in question there is no need to compute the eigenvalues of the
stability form but only to determine its signature; the relevance of this statement lies in the fact that by
Sylvester’s Law of Inertia, the signature is invariant by conjugation with respect to invertible matrices
and hence can be read out of the pivots of the matrix obtained by performing Gaussian elimination on
the stability form. Unlike the situation faced when computing eigenvalues, Gaussian elimination can
be carried out formally and not just numerically in virtually any dimension. This remark is of much
importance for non-simple mechanical systems for which dynamic block diagonalizations similar to those
cited above are rarely available.

Remark 4.9 Conditions (4.8)–(4.11) can be used in the design of magnetic fields capable of confining
magnetic rigid bodies that exhibit exclusively body rotation. This is the working principle of devices
such as magnetic contactless flywheels or levitrons. In the case of flywheels, up until now only actively
controlled versions have been developed; as to the levitron, the potentials that have been considered so
far [DE99, Dul04, KM06] do not allow to conclude nonlinear stability using the methods put at work in
Theorem 4.5 and only the spectral stability of the corresponding linearized systems has been considered.
We plan to explore in detail these systems in a future publication.

Remark 4.10 The stability conditions (4.8)–(4.11) are also valid for magnetic fields in the presence
of other sources like currents or time varying electric fields, as long as the following two conditions are
satisfied:

∂Bx (0)

∂z
=
∂By (0)

∂z
= 0. (4.13)

This statement, shown at the end of proof of Theorem 4.5 in the appendix, is important because
the stability conditions (4.8)–(4.11) cannot hold for very common magnetic fields without additional
sources like, for instance, magnetic fields obtained as the gradient of symmetric potentials (for exam-
ple those generated by permanent magnets). Indeed, suppose that the magnetic field is of the form
B(x) = −∇U(x), where x = (x, y, z) and U is an invariant function U(x) = F (x2 + y2, z). This field
automatically satisfies the Ampère-Maxwell law in the absence of currents and external electric fields,
namely, ∇×B = 0; at the same time, the Gauss-Maxwell law requires that ∇ ·B = 0, which amounts
to

4F1(x2 + y2, z) + 4(x2 + y2)F11(x2 + y2, z) + F22(x2 + y2, z) = 0,
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where F1 and F11 (respectively F22) are the first and the second derivatives with respect to the first
(respectively second) argument of F . This equality implies relations between the higher order derivatives
of F , that is, if we take derivatives with respect to the first and the second arguments we obtain:

8F11(x2 + y2, z) + 4(x2 + y2)F111(x2 + y2, z) + F221(x2 + y2, z) = 0,

4F12(x2 + y2, z) + 4(x2 + y2)F112(x2 + y2, z) + F222(x2 + y2, z) = 0.

For the singular relative equilibrium the second equality reduces to

4F12(0, 0) + F222(0, 0) = 0. (4.14)

At the same time, it is easy to check the stability conditions (4.8) and (4.9) require that F12(0, 0) and
F222(0, 0) are non-zero and have the same sign, which is clearly incompatible with (4.14).

Linear stability and instability analysis tools for relative equilibria. The use of the energy-
momentum method provides sufficient but not necessary nonlinear stability conditions. More specifically,
there is no guarantee that the stability regions determined by the inequalities in the statement of
Theorem 4.5 are optimal in the sense that as soon as those conditions are violated stability disappears.
In the context of stability studies for standard equilibria one usually proceeds by examining the spectral
stability of the linearization at the equilibrium of the vector field in question, that is, when the sufficient
stability conditions obtained via a Dirichlet type criterion are violated, one looks for eigenvalues of the
linearization that exhibit a nonzero real part, whose existence would imply the nonlinear instability of
the equilibrium of the original vector field.

This way to proceed can be extended in the context of regular relative equilibria by looking at
the spectral stability of the linearization of the reduced Hamiltonian vector field at the equilibrium
corresponding to the relative equilibrium in the symplectic Marsden–Weinstein reduced space [MW74].
Even though in the singular case, there exist reduced spaces that generalize the Marsden–Weinstein
reduced space [SL91, OR06a, OR06b], the equivalence between Gµ-stability of a relative equilibrium
and standard nonlinear stability of the corresponding reduced equilibrium is a more delicate issue, which
makes necessary the formulation of a criterion that, as the energy-momentum method in Theorem 4.2,
provides a linear stability analysis tool for relative equilibria whose formulation does not need reduction;
such a statement is provided in the next proposition, whose proof can be found in the appendix, and
we will apply it later on to the branches introduced in Proposition 3.1 whose nonlinear stability was
studied in Theorem 4.5. In order to fix the notation and to make the presentation self contained, we
start by recalling the notion of linearization of a vector field at an equilibrium point.

Definition 4.11 Let X ∈ X(M) be a vector field on the manifold M and let m0 ∈M be an equilibrium
point, that is, X(m0) = 0. The linearization X ′ of X at the point m0 is a vector field X ′ ∈ X(Tm0

M)
on the vector space Tm0

M , defined by

X ′ : Tm0
M −→ Tm0

M
v 7−→ d

dλ

∣∣
λ=0

Tm0Fλ · v,

where Fλ is the flow of X. The eigenvalues of the linear map X ′ : Tm0
M 7−→ Tm0

M are called the
characteristic exponents of X at m0.

Proposition 4.12 Let G be a Lie group acting canonically and properly on the symplectic manifold
(M,ω) and suppose that there exists a coadjoint equivariant momentum map J : M → g∗ that can be
associated to it. Let H ∈ C∞(M)G be a G–invariant Hamiltonian and let m ∈ M be a relative equilib-
rium of the corresponding G–equivariant Hamiltonian vector field XH with velocity ξ ∈ g. Consider a
Gm–invariant stability space W such that

kerTmJ = W ⊕ Tm (Gµ ·m) ,
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with µ := J(m) and Gµ ⊂ G the coadjoint isotropy of µ ∈ g∗. Then:

(i) (W,ωW ) with ωW := ω(m)|W is a symplectic vector subspace of (TmM,ω(m)).

(ii) There exists a symplectic slice (S, ωS) at m ∈M such that (TmS, ωS(m)) = (W,ωW ).

(iii) The Hamiltonian vector field XHξS
∈ X(S) in S associated to the Hamiltonian function Hξ

S :=(
H − Jξ

)∣∣
S

exhibits an equilibrium at the point m ∈ S ⊂M .

(iv) The linearization X ′
HξS
∈ X(TmS) = X(W ) of XhξS

at m ∈ S coincides with the linear Hamiltonian

vector field XQ on (W,ωW ) that has as Hamiltonian vector field the stability form

Q(w) := d2
(
H − Jξ

)
(m)(w,w), w ∈W.

(v) Suppose that the two tangent spaces Tm (Gµ ·m) and Tm (G ·m) coincide. Then

TmM = W ⊕Wω. (4.15)

Additionally, let Hξ := H − Jξ ∈ C∞(M) be the augmented Hamiltonian and let X ′Hξ ∈ X(TmM)
be the linearization of the Hamiltonian vector field XHξ at m. Then

XQ = PWX ′HξiW , (4.16)

where iW : W ↪→ TmM is the inclusion, PW : TmM −→ W is the projection according to (4.15),
and X ′Hξ is the linearization of XHξ at m.

(vi) If the linear vector field XQ is spectrally unstable in the sense that it exhibits eigenvalues with a
nontrivial real part, then the relative equilibrium m ∈ M of XH is nonlinearly K–unstable, for
any subgroup K ⊂ G.

We now provide a result that spells out how to compute the linearization of a Hamiltonian vector
field at an equilibrium for systems whose phase space is the cotangent bundle of a Lie group. The
following proposition expresses the linearization that we need in terms of a linear map on the Euclidean
vector space formed by the direct product of the Lie algebra and its dual.

Proposition 4.13 Let G be a Lie group with Lie algebra g and let T ∗G be its cotangent bundle endowed
with the canonical symplectic form. Consider now the body coordinates (left trivialized) expression G×g∗
of T ∗G and let H ∈ C∞(G × g∗) be a Hamiltonian function whose associated Hamiltonian vector field
XH exhibits an equilibrium at the point (g, µ) ∈ G× g∗. Then:

(i) Let ϕ : G × (G× g∗) → G × g∗ be the cotangent lift of the action by left translations of G on G
expressed in body coordinates. Let Hg := H ◦ ϕg; the Hamiltonian vector field XHg exhibits an
equilibrium at the point (e, µ).

(ii) Let Φg := T(e,µ)ϕg : T(e,µ) (G× g∗) ' g × g∗ −→ T(g,µ) (G× g∗) and let Q ∈ C∞
(
T(g,µ) (G× g∗)

)
(respectively Qg ∈ C∞(g× g∗)) be the quadratic form associated to the second derivative of H at
(g, µ) (respectively of Hg at (e, µ)). Then

Qg = Q ◦ Φg (4.17)

and the associated linear Hamiltonian vector fields considered as linear maps satisfy:

Φg ◦XQg = XQ ◦ Φg. (4.18)
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(iii) The linearization XQg : g× g∗ → g× g∗ is given by:

XQg (ξ, τ) =
(
πg∗ (Hess(ξ, τ)) ,−πg (Hess(ξ, τ)) + ad∗πg∗Hess(ξ,τ)µ

)
, for any (ξ, τ) ∈ g× g∗,

(4.19)
where πg : g× g∗ → g, πg∗ : g× g∗ → g∗ are the canonical projections and Hess : g× g∗ → g× g∗

is the linear map associated to the Hessian of Hg at (e, µ) by the relation

〈Hess(ξ, τ), (η, ρ)〉 = d2Hg(e, µ)((ξ, τ), (η, ρ)), (ξ, τ), (η, ρ) ∈ g× g∗.

We now implement the expression for the linearization of a Hamiltonian vector field obtained in this
proposition, in the particular case of the cotangent bundle T ∗SE(3). Let H ∈ C∞(T ∗(SE(3))) be a
Hamiltonian function and let XH be the corresponding Hamiltonian vector field that we assume has an
equilibrium at the point z0 = ((A0,x0), (Π0,p0)), that is, dH(z0) = 0. Let g = (A0,x0) ∈ SE(3) and
let z = ((I,0), (Π0,p0)); using the notation in the previous proposition, it is clear that z0 = ϕg(z). Let
Hess(z) : se(3) × se(3)∗ → se(3) × se(3)∗ be the linear map associated to the Hessian of H ◦ ϕg at z,
that is, for any v,w ∈ Tz (T ∗SE(3)) ' se(3)× se(3)∗,

〈v,Hess(z)w〉 = d2(H ◦ ϕg)(z)(v,w).

Now, given v = (δA, δx, δΠ, δp) ∈ se(3) × se(3)∗, define the projection (also available also for the δx,
δΠ, δp components):

πδA : se(3)× se(3)∗ −→ R3

(δA, δx, δΠ, δp) 7−→ δA
(4.20)

By relations (4.18) and (4.19) in Proposition 4.13, and the expression (5.10), the linearization X ′H of
XH at z0 is given by

X ′H = Φg ◦X ′Hg ◦ Φg−1 , (4.21)

where X ′Hg : se(3)× se(3)∗ ' R12 → se(3)× se(3)∗ ' R12 is the linear map determined by the twelve by
twelve matrix

X ′Hg =


πδΠHess(z0)
πδpHess(z0)

−πδAHess(z0) + Π̂0πδΠHess(z0) + p̂0πδpHess(z0)
−πδxHess(z0) + p̂0πδΠHess(z0)

 . (4.22)

This expression should be understood as a vertical concatenation of four matrices with three rows

and twelve columns each. More explicitly, given that for any v =
(
δ̂A, δx, δΠ, δp

)
∈ se(3) × se(3)∗,

Φg(v) =
(
A0δ̂A,A0δx, δΠ, δp

)
∈ Tz0

(T ∗SE(3)), we can write

X ′H

(
A0δ̂A,A0δx, δΠ, δp

)
= (A0XA, A0Xx, XΠ, Xp) ,

where (XA, Xx, XΠ, Xp) is the image by (4.22) of the vector (δA, δx, δΠ, δp).

Linear stability and instability of the orbitron relative equilibria. The results presented in
the previous paragraph provide all the necessary tools to carry out the linear stability analysis of
the relative equilibria of the standard and generalized orbitron introduced in the parts (ii) and (iii)
of Proposition 3.1. We will proceed by using expressions (4.21) and (4.22) in order to compute the
linearization at the relative equilibria of the Hamiltonian vector fields associated to the augmented
Hamiltonians constructed with the appropriate relative equilibrium velocities. We subsequently use
part (v) of Proposition 4.12 in order to write down the linearization of the restriction of this vector
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field to the tangent space to a symplectic slice (equivalently, a stability space); finally, we use the last
part of this result in order to search for instability regions by looking for eigenvalues of this linearization
that exhibit a nontrivial real part and determine how sharp the nonlinear sufficient stability conditions
in Theorem 4.5 are; more specifically, we will see that there might exist relative equilibria that are
nonlinearly stable even though the conditions in Theorem 4.5 are not satisfied. A detailed description of
this implementation is provided in Appendix 5.7. The following result, formulated using the terminology
introduced in Proposition 3.1, summarizes the results of the linear analysis.

Theorem 4.14 Consider the relative equilibria introduced in Proposition 3.1. Then:

(i) Regarding the relative equilibria of the standard orbitron in part (ii) of the proposition:

(a) The regular relative equilibria that do not satisfy the Kozorez relation (r2/h2 < 4) are unstable
and this stability condition is consequently sharp. The other two stability conditions in (4.2)
and (4.3) are not sharp, that is, there are regions in parameter space that do not satisfy them
and where the linearized system is spectrally stable.

(b) The singular relative equilibria of the standard orbitron are nonlinearly unstable.

(ii) Regarding the relative equilibria of the generalized orbitron in part (iii) of the proposition:

(a) The regular relative equilibria that do not satisfy the generalized Kozorez relation (4.5), namely,
µm
(
2f ′1 + r2f ′′2

)
< 0, are unstable and this stability condition is consequently sharp. The re-

maining stability conditions (4.4), (4.6), and (4.7) are not sharp, that is, there are regions in
parameter space that do not satisfy them and where the linearized system is spectrally stable.

(b) The spectral stability of the singular relative equilibria of the generalized orbitron is equivalent
to the following three conditions:

µmf
′
1 < 0, (4.23)

µmf
′′
2 < 0, (4.24)

Π2
0 > −4µmf0I1, (4.25)

where Π0 = I3(ξ1 − ξ2). This statement implies that the nonlinear stability conditions (4.8)
and (4.9) are sharp and that the remaining conditions are not.

Proof. (i) Part (a) The linearization XQ at the regular relative equilibria of the Hamiltonian vector
field in the stability space associated to the augmented Hamiltonian is provided in the expression (5.92).
This matrix is block diagonal and the top two by two block has as eigenvalues

λ± = ±ξ0
1

√
r2 − 4h2

r2 + h2
,

which are real whenever r2/h2 > 4, that is, when the Kozorez relation is violated. In conclusion, the part
(vi) of Proposition 4.12 ensures that as soon as the Kozorez relation is violated the relative equilibria
cease to be stable. The lack of sharpness of the two other stability conditions in (4.2) and (4.3) is
observed by studying the spectrum of the remaining six by six block of the linearization XQ which
may be purely imaginary in regions of the parameter space in which those conditions are violated. The
expressions corresponding to those six eigenvalues are very convoluted and we therefore do not include
them in the paper; in turn, we illustrate this phenomenon in Figure 3 of the next paragraph, where for
a given standard orbitron, we plot the maximum absolute value of the real part of the eigenvalues of the
linearization versus the radius of spatial rotation r and the body rotation velocity ξ2, respectively, when
all the system parameters specified in the caption remain constant. The graph on the left hand side
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shows that when the radius goes beyond the critical value stipulated by the left inequality in (4.2) the
spectrum of the linearization remains purely imaginary for a while and the system is hence potentially
stable; it is also visible that, as we proved above, the system becomes spectrally unstable as soon as the
Kozorez relation ceases to be satisfied. The lack of sharpness of the condition (4.3) is illustrated in the
right hand side graph and is of a slight different nature; indeed, as soon as the condition is not satisfied,
spectral instability appears but if the body rotation velocity is sufficiently decreased the system becomes
again spectrally stable in some interval of the ξ2 parameter space.

(i) Part (b) The corresponding linearization XQ at the singular relative equilibria is described in (5.93).
Its spectrum includes the two following eigenvalues:

λ1 =
1

h2

√
−3µ0µmq

Mπ
,

λ2 =

√√√√−(ξ1 − 1

h2

√
−3µ0µmq

2Mπ

)2

.

The eigenvalue λ1 can only be purely imaginary when µmq > 0. This in turns implies that the

term

√
−3µ0µmq

2Mπ
in λ2 is purely imaginary and prevents the eigenvalue to be purely imaginary un-

less −3µ0µmq

2Mπ
is zero.

(ii) Part (a) Analogously to the situation in the proof of (i) Part (a), the linearization XQ at the
regular relative equilibria of the generalized orbitron exhibits the following two eigenvalues:

λ± = ±2

√
1

M
µm (2f ′1 + r2f ′′1 ),

which are obviously purely imaginary if and only if the generalized Kozorez relation (4.5) holds. The
lack of sharpness in the remaining relations follows from the fact that they contain as particular cases
the stability conditions for the standard orbitron that, as we illustrate in Figure 3, are not necessary
for the spectral stability of XQ.

(ii) Part (b) The linearization XQ at the singular relative equilibria of the generalized orbitron is
provided in (5.94) and its spectrum is made up by the following ten eigenvalues:

λ±1 = ±
√

1

M
µmf ′′2 , (4.26)

λ±2,± = ±
√
− 1

M

(
ξ1
√
M ±

√
−2µmf ′1

)2

, (4.27)

λ±3,± = ±1

2

√
− 1

I1

(
(2ξ1I1 −Π0)±

√
4µmf0I1 + Π2

0

)2

. (4.28)

The eigenvalues λ±1 can be purely imaginary only when µmf
′′
2 < 0. In order for the four eigenvalues λ±2,±

to have the same property, the term
√
−2µmf ′1 has to be necessarily a real number, which yields the

condition µmf
′
1 < 0. These two relations obviously imply that the nonlinear stability conditions (4.8)

and (4.9) are sharp. Finally, the remaining four eigenvalues λ±3,± are purely imaginary whenever the

term
√

4µmf0I1 + Π2
0 is real, which requires in turn that the relation Π2

0 > 4µmf0I1 is satisfied. We note
that this relation may hold without (4.10) and (4.11) or (4.12) being satisfied. Indeed, take for example
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a system for which µmf0 < 0; in that situation, the relation (4.25) does not impose any constraint on
Π0 an hence it is easy to find values for this variable that violate (4.10) and (4.11) or (4.12). �

Stability transitions and bifurcation analysis. In order to study how spectral and nonlinear
stability arises we consider a specific standard orbitron with parameter values h = 0.05 m, M = 0.0068
kg, µ0 = 4π · 10−7 N·A−2, µ = −0.18375 A·m2, q = 17.58 A·m, I1 = 0.17 · 10−6 kg·m2, I3 = 0.1 · 10−6

kg·m2 and analyze the behavior of the eigenvalues of the linearization as a function of the radius r
of the spatial rotation and the body rotation velocity ξ2, in terms of which the nonlinear stability
conditions (4.2) and (4.3) are formulated. The results are presented in Figures 3, 4, and 5 whose
content we now comment:

• Figure 3 shows the evolution of the maximum value of the real part of the spectrum of the
linearization as a function of the radius r of the spatial rotation (left) and the body rotation
velocity ξ2 (right). When this value is zero the whole spectrum obviously lies in the imaginary
axis and the system is spectrally stable. The OX-axis in the left hand side figure contains two red
dots that indicate the values that determine the radii interval in which the stability condition (4.2)
is satisfied; these dots correspond to the values rmin and rmax in Figure 2. The behavior in rmax
illustrates the sharpness of the Kozorez stability relation that we established in Theorem 4.14,
while for rmin it is visible how the system continues for a while to be spectrally stable beyond
that value, which creates a gap (grey band II) in which we can neither prove nonlinear stability
nor instability with our methods. In the right hand side figure we carry out the same analysis in
terms of the body rotation velocity ξ2 in order to study the sharpness of the condition (4.3); the
minimal velocity given by this inequality is indicated using also a red dot in the OX-axis. In this
case there is also a gap (grey band II) in which the system is spectrally stable while we do not
have definiteness of the stability form.

• Figure 4 depicts the behavior of the spectrum of the linearization as a function of the radius r of
the spatial rotation in the different stability regions (I, II, and III) and critical points (A, B, and
C) identified in the left hand side of Figure 3 . In region I the system is spectrally unstable until
in point A a Hamiltonian Hopf bifurcation (1-1 resonance) [vdM85] takes place and the system
becomes spectrally stable in region II. A passing of two eigenvalues takes place in point B and
the system becomes nonlinearly stable in region III, as condition (4.2) is satisfied all the way until
point C in which a splitting at the origin occurs and the system ceases to be spectrally (and hence
nonlinearly) stable. We emphasize that all these eigenvalue patterns are generic in the symmetric
Hamiltonian context [DMM92].

• In Figure 5 we carry out the same analysis with respect to the body rotation velocity ξ2 and we
show that similar phenomena occur. More explicitly, in region I the system is spectrally unstable
and becomes (only spectrally) stable after a Hamiltonian Hopf bifurcation takes place at point A.
This stability is lost in point B through a splitting of eigenvalues at the origin. The figure shows
how several splittings take place in region III until in point C the system becomes nonlinearly
stable because condition (4.3) is satisfied beyond that point.



Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies 18

I

A

II

B

III

C IV

rmin rmax

I

A

II

B

III

C

IV

Figure 3: Spectral stability study for the relative equilibria of a standard orbitron with h = 0.05 m, M = 0.0068 kg,
µ0 = 4π · 10−7 N·A−2, µ = −0.18375 A·m2, q = 17.58 A·m, I1 = 0.17 · 10−6 kg·m2, I3 = 0.1 · 10−6 kg·m2. The
position of the red bullets indicates the critical values of rmin and rmax (m) and ξ2 (rad·s−1) determined by
the stability conditions (4.2) and (4.3), respectively. The grey bands correspond to the stability gaps discussed
in the proof of Theorem 4.14, part (i) in which the system is spectrally stable while the stability form exhibits
a nontrivial signature.

5 Appendices

5.1 The geometry of the phase space of the orbitron (T ∗SE(3), ω)

Lie group and Lie algebra structure of the configuration space. The configuration space of the
orbitron is the Lie group SE(3) = SO(3)×R3 endowed with the semidirect product structure associated
to the composition rule

Ψ : SE(3)× SE(3) −→ SE(3)
((A1,x1), (A2,x2)) 7−→ (A1A2, A1x2 + x1),

(5.1)

for which e = (I, 0) and (A,x)−1 = (A−1,−A−1x). In order to spell out the Lie algebra structure
associated to the Lie product (5.1) we start by recalling the Lie algebra isomorphism ̂:

(
R3,×

)
−→

(so(3), [·, ·]) between the Lie algebra (so(3), [·, ·]) of SO(3) and (R3,×) endowed with the standard cross
product, given by the assignment

x = (x1, x2, x3) ∈ R3 7−→ x̂ :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
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I A II B III C IV

Figure 4: Behavior of the spectrum of the linearization in terms of the radius r of spatial rotation in the different stability
regions identified in the left hand side of Figure 3.

I A II B III III C IV

Figure 5: Behavior of the spectrum of the linearization in terms of the body rotation velocity ξ2 in the different stability
regions identified in the right hand side of Figure 3.

We recall that isomorphism ̂ satisfies that x̂w = x×w and that for any A ∈ SO(3) and x ∈ R3

TILA · x̂ = Ax̂, (5.2)

AdAx̂ = Ax̂A−1 = Âx, (5.3)

AdAx̂ = TI (LA ◦RA−1) x̂ =
d

dt

∣∣∣∣
0

A exp tx̂A−1 = Ax̂A−1 = Âx, (5.4)

where LA : SO(3) → SO(3) (respectively RA) denotes left (respectively right) translations and AdA :
so(3)→ so(3) is the adjoint representation. The ̂ isomorphism induces another one

̂ : R3 −→ so(3)∗

π 7−→ π̂

uniquely determined by the relation 〈π̂, x̂〉 := 〈π,x〉R3 , with 〈·, ·〉R3 the Euclidean inner product in R3.
Using this isomorphism, we have

Ad∗Aπ̂ = Â−1π. (5.5)

Using this notation, the Lie algebra structure of se(3) = so(3)× R3 is given by the bracket

[(ρ̂1, τ 1) , (ρ̂2, τ 2)] :=
(
ρ̂1 × ρ2,ρ1 × τ 2 − ρ2 × τ 1

)
. (5.6)
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Additionally, for any (A,x) ∈ SE(3), (ρ̂, τ ) , (ρ̂1, τ 1) , (ρ̂2, τ 2) ∈ se(3), (µ̂,α) ∈ se(3)∗, β,γ ∈ R3, the
following relations that we use later on in the paper hold

T(I,0)L(A,x) · (ρ̂, τ ) = (Aρ̂, Aτ ) (5.7)

T(I,0)R(A,x) · (ρ̂, τ ) = (ρ̂A,ρ× x + τ ) (5.8)

ad(ρ̂1,τ1) (ρ̂2, τ 2) =
(
ρ̂1 × ρ2,ρ1 × τ 2 − ρ2 × τ 1

)
, (5.9)

ad∗(ρ̂,τ ) (µ̂,α) =
(
µ̂× ρ+ α̂× τ ,α× ρ

)
, (5.10)

T ∗(I,0)R(A,x)

(
β̂A,γ

)
= (β + x× γ,γ) , (5.11)

T ∗(I,0)L(A,x)

(
Aβ̂,γ

)
=
(
β, A−1γ

)
. (5.12)

In the last two expressions we have identified T ∗(A,x)SE(3) with T(A,x)SE(3) using the Frobenius norm

in the SO(3) part and the Euclidean norm in the R3 part. Using these equalities, it is easy to see that
the adjoint and coadjoint actions of SE(3) on its algebra se(3) and its dual se(3)∗ are determined by:

Ad(A,x) (ρ̂, τ ) = (AdAρ̂,−(AdAρ̂)x +Aτ ) =
(
Âρ,x×Aρ+Aτ

)
, (5.13)

Ad∗(A,x) (µ̂,α) =
(

Ad∗Aµ̂− ̂(A−1 (x×α)), A−1α
)

=
((

̂A−1(µ− (x×α))
)
, A−1α

)
. (5.14)

Body and space coordinates for T ∗SE(3). Given an arbitrary Lie group G with Lie algebra g, we
recall (see for example [AM78]) that the maps

%1 : TG −→ G× g
ug 7−→ (g, TgRg−1 · ug)

TeRg · ξ 7−→ (g, ξ).
and

%2 : T ∗G −→ G× g∗
αg 7−→ (g, T ∗eRg · αg)

T ∗gRg−1 · µ 7−→ (g, µ)
(5.15)

define trivializations of the tangent TG and cotangent bundles T ∗G, respectively, that are usually
referred to as space coordinates of these bundles. Notice that if %1 (ug) = (g, ξ), %2 (αg) = (g, µ), then
〈αg, ug〉 = 〈µ, ξ〉.

Analogously, the trivializations obtained using left translations instead via the maps

λ1 : TG −→ G× g
ug 7−→ (g, TgLg−1 · ug)

TeLg · ξ 7−→ (g, ξ).
and

λ2 : T ∗G −→ G× g∗
αg 7−→ (g, T ∗e Lg · αg)

T ∗g Lg−1 · µ 7−→ (g, µ)
(5.16)

are usually referred to as body coordinates. Notice that if λ1 (ug) = (g, ξ), λ2 (αg) = (g, µ), then
〈αg, ug〉 = 〈µ, ξ〉.

We now use these maps to establish the relation between the space and body coordinates ((A,x), (ΠS ,pS))
and ((A,x), (ΠB ,pB)), respectively, of an arbitrary point in T ∗SE(3). Indeed, using (5.16), (5.15), and
(5.14), we have that

((A,x), (ΠB ,pB)) = λ2

(
T ∗(A,x)R(A,x)−1 · (ΠS ,pS)

)
=
(

(A,x),Ad∗(A,x)(ΠS ,pS)
)

=
(
(A,x), (A−1(ΠS − x× pS), A−1pS)

)
.

Consequently,

ΠB = A−1 (ΠS − x× pS) ,

pB = A−1pS . (5.17)



Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies 21

Conversely,

ΠS = AΠB + x×ApB ,

pS = ApB . (5.18)

5.2 Equations of motion of the orbitron

In this section we obtain the equations of motion (2.11)-(2.14) of the orbitron using body coordinates.
We will proceed by writing down first the differential equations that define a Hamiltonian vector field
on the left trivialized cotangent bundle G× g∗ of an arbitrary Lie group G with Lie algebra g.

Proposition 5.1 Let G be a Lie group with Lie algebra g and let T ∗G be its cotangent bundle endowed
with the canonical symplectic form. Let ωB be the corresponding symplectic form on the trivial bundle
G × g∗ obtained out of T ∗G by left trivialization (body coordinates) and let H ∈ C∞(G × g∗) be a
Hamiltonian function. For any (g, µ) ∈ G×g∗, the Hamiltonian vector field XH ∈ X(G×g∗) associated
to H is given by

XH (g, µ) = (TILg ·XG (g, µ) , Xg∗ (g, µ)) , (5.19)

where XG(g, µ) ∈ g and Xg∗ (g, µ) ∈ g∗ are determined by

XG (g, µ) = Dg∗H (g, µ) , (5.20)

Xg∗ (g, µ) = −T ∗I Lg ·DGH (g, µ) + ad∗Dg∗H(g,µ)µ. (5.21)

Proof. Using the expression of the canonical symplectic form ωB of T ∗G in body coordinates (see for
instance [OR04, Expression (6.2.5)]) it is easy to see that XG, Xg∗ , and hence XH , are determined by
the relation

ωB(g, µ) (XH (g, µ) , (TILg · ξG, β)) = 〈β,XG (g, µ)〉 − 〈Xg∗ (g, µ) , ξG〉
+ 〈µ, [XG (g, µ) , ξG]〉 = DGH (g, µ) · TILg · ξG +Dg∗H (g, µ) · β,

where ξG ∈ g and β ∈ g∗ are arbitrary and DGH and Dg∗H are the partial derivatives of H with respect
to G and g∗, respectively. Equivalently,

XG (g, µ) = Dg∗H (g, µ) ,

Xg∗ (g, µ) = −T ∗I Lg ·DGH (g, µ) + ad∗Dg∗H(g,µ)µ,

as required. �

We now consider the case we are interested in, that is, G = SE(3) = SO(3)× R3 and

H ((A,x), (Π,p)) =
1

2
ΠT I−1

ref Π +
1

2M
pTp− µm〈B(x), Ae3〉. (5.22)

Let
v(A,x) = T(I,0)L(A,x) ·

(
δ̂A, δx

)
=
(
Aδ̂A,Aδx

)
be an arbitrary element of T(A,x)SE(3) and β = (δΠ, δp) ∈ se(3)∗. Then, as

dH ((A,x), (Π,p)) ·
(
v(A,x), β

)
=

d

dt

∣∣∣∣
0

H
((

(A,x) · (exp tδ̂A, tδx)
)
, (Π + tδΠ,p + tδp)

)
=

〈I−1
ref Π, δΠ〉+

1

M
〈p, δp〉 − µm〈DB(x)TAe3, Aδx〉+ 〈A( ̂e3 ×A−1B(x)), Aδ̂A〉,
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we can conclude that

DGH ((A,x), (Π,p)) =

(
A
[

̂e3 ×A−1B(x)
]

−µmDB(x)TAe3

)
, (5.23)

Dg∗H ((A,x), (Π,p)) =

(
I−1
ref Π
1
M p

)
. (5.24)

Now using (5.20) and (5.21), together with and (5.23), (5.24), (5.10), and (5.12), we obtain

Xg∗ (g, µ) =

(
−e3 ×A−1B(x) + Π× I−1

ref Π
µmA

−1DB(x)TAe3 + p× I−1
ref Π

)
,

XG (g, µ) =

(
I−1
ref Π
1
M p

)
.

Consequently, by (5.19) we conclude that the equations of motion associated to the Hamiltonian (5.22)
are

Ȧ = AÎ−1
ref Π,

ẋ =
1

M
Ap,

Π̇ = Π× I−1
ref Π +A−1B(x)× e3,

ṗ = p× I−1
ref Π + µmA

−1DB(x)TAe3.

5.3 The toral action on phase space T ∗SE(3) and the associated momentum
map

The expression of the lifted action in body coordinates. We start by proving that the cotangent
lift of the toral action on SE(3) in (2.15) is given by (2.16) when using body coordinates. Consider H
and G two arbitrary Lie groups and let Φ : H × G −→ G be an action of H on G. We recall that the
lift of this action to the cotangent bundle T ∗G of G, also denoted by Φ, is given by

Φ : H × T ∗G −→ T ∗G
(h, αg) 7−→ T ∗Φh(g)Φh−1 · αg.

Using the maps introduced in (5.16), this action is expressed in body coordinates as:

Φ (h, (g, µ)) := λ2

(
Φ
(
h, λ−1

2 (g, µ)
))
, for any h ∈ H, g ∈ G, and µ ∈ g∗,

or equivalently,

Φh (g, µ) =
(

Φh (g) , T ∗e LΦh(g) · T ∗Φh(g)

(
Lg−1 ◦ Φh−1

)
µ
)

=
(
Φh (g) , T ∗e

(
Lg−1 ◦ Φh−1 ◦ LΦh(g)

)
µ
)
.

In the particular case of H = T2, G = SE(3), and the toral action introduced in (2.15), that is,

Φ : (T2 = S1 × S1)× SE(3) −→ SE(3)((
eiθS , eiθB

)
, (A,x)

)
7−→ (RZθSAR

Z
−θB , R

Z
θS

x),

we consider g = (A,x) ∈ SE(3), µ =
(
Π̂,p

)
∈ se(3)∗, and h =

(
eiθS , eiθB

)
∈ T2. Then,

Φh (g, µ) =
((
RZθSAR

Z
θ−B , R

Z
θSx
)
, T ∗e

(
Lg−1 ◦ Φh−1 ◦ LΦh(g)

)
µ
)
. (5.25)
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In order to compute the second part of this expression let ξ = (ρ̂, τ ) ∈ se(3). Then〈
T ∗e
(
Lg−1 ◦ Φh−1 ◦ LΦh(g)

)
µ, ξ
〉

=
〈
µ, Te

(
Lg−1 ◦ Φh−1 ◦ LΦh(g)

)
ξ
〉

=
d

dt

∣∣∣∣
0

〈(
Π̂,p

)
, L(A−1,−A−1x) ◦ Φ(e−iθS ,e−iθB ) ◦ L

(
RZθS

ARZ−θB
,RZθS

x
) (exp tρ̂, tτ )

〉
=

d

dt

∣∣∣∣
0

〈(
Π̂,p

)
,
(
A−1ARZ−θB exp tρ̂RZθB , A

−1ARZ−θB tτ +A−1x−A−1x
)〉

=
d

dt

∣∣∣∣
0

〈(
Π̂,p

)
,
(
RZ−θB exp tρ̂RZθB , tR

Z
−θBτ

)〉
=
〈(

Π̂,p
)
,
(

AdRZ
−θB
ρ̂,RZ

−θBτ
)〉

=
〈(

Ad∗RZ−θB
Π̂, RZθBp

)
, (ρ̂, τ )

〉
.

Given that by (5.4) Ad∗RZ−θB
Π̂ = R̂ZθBΠ, the last equality together with (5.25) yield the expression (2.16)

of the lifted action in body coordinates, that is,

Φ(eiθS ,eiθB ) ((A,x), (Π,p)) =
(
(RθSAR

Z
−θB , R

Z
θSx), (RZθBΠ, RZθBp)

)
. (5.26)

The infinitesimal generators of the toral action. We first show that for any Lie algebra element
(ξ1, ξ2) ∈ R2 = Lie(T2) and (A,x) ∈ SE(3),

(ξ1, ξ2)SE(3) (A,x) = T(I,0)R(A,x)

(
̂ξ1e3 −Aξ2e3, Aξ2e3 × x

)
(5.27)

= T(I,0)L(A,x)

(
AdA−1 ξ̂1e3 − ξ̂2e3, A

−1 (ξ1e3 × x)
)
. (5.28)

We start by proving the first equality

(ξ1, ξ2)SE(3) (A,x) =
d

dt

∣∣∣∣
0

(exp tξ̂1e3A exp(−tξ̂2e3), exp tξ̂1e3x) = (ξ̂1e3A−Aξ̂2e3, ξ̂1e3x)

= (ξ̂1e3A−Aξ̂2e3A
−1A, ξ1e3 × x) =

(
(ξ̂1e3 −Aξ̂2e3A

−1)A, (ξ̂1e3 −Aξ̂2e3 +Aξ̂2e3)× x
)

=
(

( ̂ξ1e3 −Aξ2e3)A, (ξ1e3 −Aξ2e3)× x + (Aξ2e3 × x)
)

= T(I,0)R(A,x)

(
( ̂ξ1e3 −Aξ2e3), Aξ2e3 × x

)
,

where in the last equality we used (5.8). Regarding (5.28), note that

(ξ1, ξ2)SE(3) (A,x) =
d

dt

∣∣∣∣
0

(exp tξ̂1e3A exp(−tξ̂2e3), exp tξ̂1e3x) = (ξ̂1e3A−Aξ̂2e3, ξ̂1e3x)

= (AA−1ξ̂1e3A−Aξ̂2e3, ξ1e3 × x) =
(
TILA(AdA−1 ξ̂1e3 − ξ̂2e3), (AA−1(ξ1e3 × x))

)
= T(I,0)L(A,x)

(
AdA−1 ξ̂1e3 − ξ̂2e3, A

−1 (ξ1e3 × x)
)
,

where we used (5.7).
The infinitesimal generator of the lifted T2-action on T ∗SE(3) in body coordinates is given by

(ξ1, ξ2)T∗SE(3) (A,x,Π,p) =
(
A(AdA−1(ξ̂1e3)− ξ̂2e3), ξ̂1e3x, ξ̂2e3Π, ξ̂2e3p

)
(5.29)
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Indeed,

(ξ1, ξ2)T∗SE(3) (A,x,Π,p) =
d

dt

∣∣∣∣
0

exp t(ξ1, ξ2) · (A,x,Π,p)

=
d

dt

∣∣∣∣
0

(
exp tξ̂1e3A exp(−tξ̂2e3), exp tξ̂1e3x, exp tξ̂2e3Π, exp tξ̂2e3p

)
=
(
AA−1ξ̂1e3A−Aξ̂2e3, ξ̂1e3x, ξ̂2e3Π, ξ̂2e3p

)
=
(
A
(

AdA−1

(
ξ̂1e3

)
− ξ̂2e3

)
, ξ̂1e3x, ξ̂2e3Π, ξ̂2e3p

)
.

The momentum map of the toral action Given a lifted action of a Lie group H on the cotangent
bundle T ∗G of a Lie group G endowed with the canonical symplectic form, the map J : T ∗G −→ g∗

defined by
〈J(αg), ξ〉 = 〈αg, ξG(g)〉 for any g ∈ G, αg ∈ T ∗G, and ξ ∈ h, (5.30)

is a coadjoint equivariant momentum map for this canonical action (see [AM78, Corollary 4.2.11]). We
now study the particular case we are interested in, that is, H = T2, G = SE(3), and consider an
arbitrary point g = (A,x) ∈ SE(3), µ = (Π,p) ∈ se(3)∗ and αg = T ∗g Lg−1 · µ ∈ T ∗SE(3) the covector
that in body coordinates is expressed as ((A,x) , (Π,p)). With this notation, the expression in body
coordinates of the momentum map J : SE(3)× se(3)∗ −→ R2 in (5.30) is given by

J ((A,x) , (Π,p)) = (〈AΠ + x×Ap, e3〉,−〈Π, e3〉) . (5.31)

Indeed, for any (ξ1, ξ2) ∈ R2,

〈J ((A,x) , (Π,p)) , (ξ1, ξ2)〉 =
〈
T ∗(A,x)L(A,x)−1 (Π,p) , T(I,0)L(A,x)

(
( ̂A−1ξ1e3 − ξ2e3), A−1(ξ1e3 × x)

)〉
= 〈Π, A−1ξ1e3 − ξ2e3〉+ 〈p, A−1(ξ1e3 × x)〉 = 〈Π, A−1ξ1e3 − ξ2e3〉+ 〈p, A−1(ξ1e3 × x)〉,

which proves (5.31) since (ξ1, ξ2) ∈ R2 is arbitrary.

5.4 Proof of Proposition 3.1

(i) Using the statement preceeding (3.3) we will specify the relative equilibria of the orbitron by char-
acterizing the points z = ((A,x) , (Π,p)) ∈ T ∗SE(3) for which

d(H − J (ξ1,ξ2)) ((A,x) , (Π,p)) = 0 (5.32)

for some (ξ1, ξ2) ∈ R2. We start by computing the tangent of the momentum map and the differential

of the Hamiltonian. Let v =
(

(δ̂AA, δx), (δΠ, δp)
)
∈ Tz (T ∗SE(3)) be an arbitrary vector at the point

z, then it is easy to check that

dT (Π,p) · v = 〈Π, I−1
ref δΠ〉+

1

M
〈p, δp〉, (5.33)

dV (A,x) · v = −µm [〈DB(x)(δx), Ae3〉+ 〈B(x), δA×Ae3〉] . (5.34)

with T and V the kinetic and potential energies introduced in (2.2). Additionally,

T((A,x),(Π,p))J ·
(

(δ̂AA, δx), (δΠ, δp)
)

=
(
〈δA×AΠ +AδΠ + δx×Ap + x× (δA×Ap) + x×Aδp, e3〉,−〈δΠ, e3〉

)
. (5.35)
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Consequently, using (5.33), (5.34) and (5.35) we have, for any (ξ1, ξ2) ∈ R2

d
(
H − J (ξ1,ξ2)

)
(z) · v = ΠT I−1

ref δΠ +
1

M
p · δp− µm [〈DB(x)(δx), Ae3〉+ 〈B(x), δA×Ae3〉]

+ ξ2δΠ · e3 − ξ1 (δA×AΠ +AδΠ + δx×Ap + x× (δA×Ap) + x×Aδp) · e3. (5.36)

Therefore, as δ̂A, δx, δΠ, and δp in this expression are arbitrary, it can be checked that the points
z ∈ T ∗SE(3) for which d(H − J (ξ1,ξ2)) (z) = 0 are characterized by the equations:

µm [B(x)×Ae3] + ξ1 [Ap× (x× e3)−AΠ× e3] = 0, (5.37)

− µmDB(x)T (Ae3)− ξ1 (Ap× e3) = 0, (5.38)

I−1
ref Π + ξ2e3 − ξ1A−1e3 = 0, (5.39)

1

M
p− ξ1A−1 (e3 × x) = 0, (5.40)

as required.

(ii) We show that the points z0 = ((A0,x0) , (Π0,p0)) of the form specified in the statement of the
proposition satisfy equations (5.37)–(5.40) and hence constitute a branch of relative equilibria. We
proceed by considering A0 = RZθ0 and x0 = (x, y, 0) and using equations (5.37)–(5.40) to determine Π0,
p0, and the velocity ξ = (ξ1, ξ2) in the statement.

Notice first that A0e3 = e3, hence by (5.40) we have that

p0 = Mξ1A
−1
0 (−y, x, 0) , (5.41)

necessarily. Now by (5.39)

Π0 = Iref (ξ1 − ξ2) e3 = I3 (ξ1 − ξ2) e3. (5.42)

In order to handle (5.38) we note that DB(x) is given by the matrix whose components are

∂Bx
∂x

= k

(
D(x)+ − 3x2

D(x)
5/2
+

− D(x)− − 3x2

D(x)
5/2
−

)
,

∂Bx
∂y

= k

(
−3xy

D(x)
5/2
+

+
3xy

D(x)
5/2
−

)
,

∂Bx
∂z

= k

(
−3x(z − h)

D(x)
5/2
+

+
3x(z + h)

D(x)
5/2
−

)
,

∂By
∂x

= k

(
−3xy

D(x)
5/2
+

+
3xy

D(x)
5/2
−

)
,

∂By
∂y

= k

(
D(x)+ − 3y2

D(x)
5/2
+

− D(x)− − 3y2

D(x)
5/2
−

)
,

∂By
∂z

= k

(
−3y(z − h)

D(x)
5/2
+

+
3y(z + h)

D(x)
5/2
−

)
,
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∂Bz
∂x

= k

(
−3x(z − h)

D(x)
5/2
+

+
3x(z + h)

D(x)
5/2
−

)
,

∂Bz
∂y

= k

(
−3y(z − h)

D(x)
5/2
+

+
3y(z + h)

D(x)
5/2
−

)
,

∂Bz
∂z

= k

(
D(x)+ − 3(z − h)2

D(x)
5/2
+

− D(x)− − 3(z + h)2

D(x)
5/2
−

)
,

where D(x)+ = x2 + y2 + (z − h)2, D(x)− = x2 + y2 + (z + h)2 and k =
µ0q

4π
. Consequently,

DB(x0) = k

 0 0 6xh
D(x0)5/2

0 0 6yh
D(x0)5/2

6xh
D(x0)5/2

6yh
D(x0)5/2

0

 ,

where D(x0) = D(x0)+ = D(x0)−. Hence

DB (x0)
T

(A0e3) = DB (x0)
T

e3 =
6kh

D(x0)5/2
x0. (5.43)

Note additionally that by (5.41)
A0p0 × e3 = Mξ1x0. (5.44)

Then by equalities (5.43) and by (5.44), equation (5.38) holds whenever x0 = 0 or when x0 6= 0

and ξ2
1 = − 3hµmqµ0

2πMD(x0)5/2
; we note that in both situations, there are no restrictions on the second

component of the velocity ξ2. Finally, it can be readily verified that (5.37) always holds at the point

((A0,x0) , (Π0,p0)) by using that B(x0) = − µ0qh

2πD(x0)3/2
e3.

(iii) Suppose that we are in the presence of a magnetic field B equivariant with respect to rotations
around the OZ axis and that behaves as indicated in (2.7)–(2.9) with respect to the mirror transforma-
tion (2.6). Notice first that by (2.7) and (2.8)

Bx(x, y, 0) = By(x, y, 0) = 0 (5.45)

and hence
B(x, y, 0) = Bz(x, y, 0)e3. (5.46)

Additionally, by (2.5), Bz(x, y, 0) is rotationally invariant with respect to rotations in the OXY plane,
hence

Bz(x, y, 0) = f(x2 + y2), for some f ∈ C∞(R2). (5.47)

Conditions (3.7) and (3.6) show that if A0 = Rzθ0 and x0 = (x, y, 0), then Π0 = I3 (ξ1 − ξ2) e3 and

p0 = Mξ1A
−1
0 (−y, x, 0) necessarily. If we use z0 = ((A0,x0), (Π0,p0)) and (5.46) in the expression

(3.4), it can be easily verified that this relation is automatically satisfied.
In order to study the expression (3.5), we take derivatives on both sides of (2.9) and obtain that

∂zBz(x, y, z) = −∂zBz(x, y,−z)

which shows that
∂zBz(x, y, 0) = 0. (5.48)
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Finally, by (5.46) and (5.48) the relation (3.5) amounts to

−µm(∂xBz, ∂yBz, 0) = Mξ2
1x0.

By (5.47) this is equivalent to
−2µmf

′(x2 + y2)x0 = Mξ2
1x0,

which guarantees that (3.5) is satisfied provided that

ξ1 = ±
(
− 2

M
µmf

′(x2 + y2)

)1/2

, (5.49)

as required. �

5.5 Proof of Theorem 4.5

We will proceed by using Theorem 4.2 in order to determine the regions in parameter space for which
the stability form (4.1) at the relative equilibria is definite, which in turn ensures T2–stability.

We start by denoting the augmented Hamiltonian as Hξ := H − Jξ, for any ξ = (ξ1, ξ2) ∈ Lie
(
T2
)
.

Let z = ((A,x) , (Π,p)) ∈ T ∗ (SE(3)) expressed in body coordinates. As we saw in the proof of
Proposition 3.1 (see Appendix 5.4), the partial derivatives of Hξ are given by:

• HξA := DAH
ξ(z) = µm [B(x)×Ae3] + ξ1 [Ap× (x× e3)−AΠ× e3],

• Hξx := DxH
ξ(z) = −µmDB(x)T (Ae3)− ξ1 (Ap× e3),

• HξΠ := DΠH
ξ(z) = I−1

ref Π + ξ2e3 − ξ1A−1e3,

• Hξp := DpH
ξ(z) = 1

M p− ξ1A−1 (e3 × x).

In order to compute the Hessian of the augmented Hamiltonian, we write down the derivatives of its par-

tial derivatives in the direction given by the vector v =
d

dt

∣∣∣∣
0

(
(exp tδ̂AA,x + tδx), (Π + tδΠ,p + tδp)

)
.

A straightforward computation yields:

• dHξA(z) · v = µm

[
(DB(x)δx)×Ae3 + B(x)× (δ̂AAe3)

]
+ ξ1

[
(δ̂AAp +Aδp)× (x× e3) +Ap×

(δx× e3)− δ̂AAΠ× e3 − (AδΠ× e3)
]
,

• dHξx(z) · v = −µm (TxF(δx)) (Ae3)− µmF(x) (δA×Ae3)− ξ1(δ̂AAp× e3 +Aδp× e3), where

F : R3 −→M3×3

x 7−→ DB(x)T ,

• dHξΠ(z) · v = I−1
ref δΠ + ξ1A

T δ̂Ae3,

• dHξp(z) · v =
δp

M
− ξ1AT δ̂A(x× e3) + ξ1A

T (δx× e3).
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Consequently, the matrix expression associated to d2
(
H − Jξ

)
(z) is given by:

−µm
[
B̂(x)Âe3

]
+ ξ1

[
x̂× e3Âp− ê3ÂΠ

]
−µmÂe3F(x)T − ξ1Âpê3 ξ1ê3A −ξ1x̂× e3A

µm

[
F(x)Âe3

]
− ξ1ê3Âp −µmTxF(·)(Ae3) 0 ξ1ê3A

−ξ1AT ê3 0 I−1
ref 0

ξ1A
T x̂× e3 −ξ1AT ê3 0

1

M
Iid


(5.50)

We now compute the value of the Hessian (5.50) at the relative equilibria in the second and third parts of

Proposition 3.1, that is, z0 = ((A0,x0) , (Π0,p0)) with A0 = RZθ , x0 = (x, y, 0)
T

, Π0 = I3
(
ξ0
1 − ξ2

)
e3,

and p0 = Mξ0
1A
−1
0 (−y, x, 0)

T
. We start by noticing that

TxF(·)(e3) = Hess (Bz) (x). (5.51)

Indeed, for any δx ∈ TxR3

TxF(δx)(e3) =
d

dt

∣∣∣∣
0

F (x + tδx) (e3) =
d

dt

∣∣∣∣
0

DB (x + tδx)
T

e3

=
d

dt

∣∣∣∣
0



∂Bz
∂x

(x + tδx)

∂Bz
∂y

(x + tδx)

∂Bz
∂z

(x + tδx)


= Hess (Bz) (x) · δx. (5.52)

Therefore, the matrix expression associated to d2
(
H − Jξ

)
(z0) is given by:

−µm
[
B̂(x0)ê3

]
+ ξ1

[
x̂0 × e3p̂0 − ê3Π̂0

]
−µmê3F(x0)T − ξ1p̂0ê3 ξ1ê3 −ξ1(x̂0 × e3)

µmF(x0)ê3 − ξ1ê3p̂0 −µmHess (Bz) (x0) 0 ξ1ê3

−ξ1ê3 0 I−1
ref 0

ξ1(x̂0 × e3) −ξ1ê3 0
1

M
Iid

 .

(5.53)
In order to construct stability forms for the regular and singular branches, we now determine stability
spaces W to which we will restrict the Hessian (5.53).

A stability space for the regular branch (r > 0). In this case, the kernel of the derivative of the
momentum map is given by:

kerTz0J =
{
v =

(
(δ̂A, δx), (δΠ, δp)

)
∈ Tz0 (SE(3)× se(3)∗) | Tz0J · v = 0

}
=
{
v ∈ Tz0

(SE(3)× se(3)∗) | δΠ · e3 = 0, δp2 = −Mξ0
1δx1

}
,

and using (5.29), the tangent space t2 ·z0 := Tz0

(
T2 · z0

)
to the toral orbit that goes through the relative

equilibrium z0 can be characterized as:

t2 · z0 =
{

(ξ1, ξ2)T∗SE(3) (z0) | ξ1, ξ2 ∈ R
}

=
{(

̂(ξ1e3 − ξ2e3), ξ1e3 × x0,0, ξ2e3 × p0

)
| ξ1, ξ2 ∈ R2

}
=
{(

(ξ1 − ξ2) e3, ξ1re2,0,−ξ2Mrξ0
1e1

)
| ξ1, ξ2 ∈ R2

}
.
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Finally, it can be easily verified that the vector subspace W ⊂ kerTz0J

W :=
{

(δA, δx, δΠ, δp) | δΠ · e3 = 0, δx · p0 = 0, δp · x0 = 0, δp2 = −Mξ0
1δx1

}
is such that

KerTz0J = W ⊕ t2 · z0, (5.54)

and hence constitutes a stability space. Moreover, let u1 =
(
0, e1,0,−Mξ0

1e2

)
, u2 = (e3,0,0,0),

u3 = (0,0, e1,0), u4 = (0,0, e2,0), u5 = (0,0,0, e3), u6 = (0, e3,0,0), u7 = (e2,0,0,0), and u8 =
(e1,0,0,0). It can be checked that

W = span
{

u1,u2,u3,u4,u5,u6,u7,u8

}
. (5.55)

The set B =
{

u1,u2,u3,u4,u5,u6,u7,u8

}
will be used as a basis of the stability space in order to

obtain matrix expressions for the stability form d2
(
H − J (ξ01 ,ξ2)

)
(z0)

∣∣∣
W×W

corresponding to each

part of Theorem 4.5.

A stability space for the singular branch (r = 0). Consider now the relative equlibrium z0 =
((A0,x0) , (Π0,p0)) with A0 = RZθ0 , x0 = (0, 0, 0), Π0 = I3 (ξ1 − ξ2) e3, and p0 = 0, ξ1, ξ2 ∈ R. In this

case, the matrix expression (5.50) associated to d2
(
H − Jξ

)
(z) is given by:

−µmB̂(x0)ê3 − ξ1ê3Π̂0 0 ξ1ê3 0
0 −µmHess (Bz) (x0) 0 ξ1ê3

−ξ1ê3 0 I−1
ref 0

0 −ξ1ê3 0
1

M
Iid

 . (5.56)

These relative equilibria lay on the singular isotropy type manifold (2.18) and hence by the Bifurcation
Lemma (see [OR04, Proposition 4.5.12]), the kernel of the derivative of the momentum map is necessarily
of dimension eleven at those points. Indeed, it can be checked that:

kerTz0
J = {v ∈ Tz0

(SE(3)× se(3)∗) | δΠ · e3 = 0} ,

and using (5.29), the tangent space t2 · z0 := Tz0

(
T2 · z0

)
to the toral orbit that goes through the

singular relative equilibrium z0 can be characterized as:

t2 · z0 =
{

((ξ1 − ξ2) e3,0,0,0) | ξ1, ξ2 ∈ R2
}

= span{(e3,0,0,0)}.

Finally, it can be easily verified that the vector subspace W ⊂ kerTz0J given by

W = span
{

u1,u2,u3,u4,u5,u6,u7,u8,u9,u10

}
, (5.57)

with u1 = (0,0,0, e3), u2 = (0, e3,0,0), u3 = (0,0,0, e2), u4 = (0,0,0, e1), u5 = (0,0, e2,0), u6 =
(0,0, e1,0), u7 = (0, e2,0,0), u8 = (0, e1,0,0), u9 = (e2,0,0,0), and u10 = (e1,0,0,0) is a H–
invariant stability space, that is,

KerTz0J = W ⊕ t2 · z0, (5.58)

and hence constitutes a stability space. We recall that H :=
{(
eiθ, eiθ

)
| eiθ ∈ S1

}
= T2

z0
is the isotropy

subgroup of the relative equilibrium z0. We will use the set B =
{

u1,u2,u3,u4,u5,u6,u7,u8,u9,u10

}
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as a basis of the stability space in order to obtain a matrix expression for the stability form d2
(
H − J (ξ1,ξ2)

)
(z0)

∣∣∣
W×W

for the parts (i) and (ii) of Theorem 4.5.

Proof of part (i) of the theorem.

Stability study for the regular branch. We start by noting that the stability of a relative equi-
librium can be determined by using any of the the points that constitute its trajectory in phase
space. Hence we can, without loss of generality, use the relative equilibrium point z0 of the form
z0 =

(
(Iid, re1), (I3

(
ξ0
1 − ξ2

)
e3,Mrξ0

1e2)
)
. We recall that the regular relative equilibria are those for

which r > 0 and

ξ0
1 = ±

(
− 3hµmqµ0

2πMD(x0)5/2

)1/2

.

We now provide the expression of Hess (Bz) (x0) using the same notation as in (5.43) and conclude that

Hess (Bz) (x0) =
6kh

D(x0)7/2

 D(x0)− 5x2 −5xy 0
−5xy D(x0)− 5y2 0

0 0 3D(x0)− 5h2

 .

By (5.53) and (5.55) we obtain that the stability form d2
(
h− J (ξ01 ,ξ2)

)
(z0)

∣∣∣
W×W

can be written as:



Mξ0
1

4h2 − r2

r2 + h2
0 0 0 0 0 0 0

0 Mξ0
1

2
r2 0 0 0 0 0 0

0 0
1

I1
0 0 0 ξ0

1 0

0 0 0
1

I1
0 0 0 −ξ0

1

0 0 0 0
1

M
0 0 ξ0

1r

0 0 0 0 0 Mξ0
1

2 3r2 − 2h2

r2 + h2
Mξ0

1
2
r 0

0 0 ξ0
1 0 0 Mξ0

1
2
r

1

3
Mξ0

1
2
(r2 + h2) + ξ0

1Π0 0

0 0 0 −ξ0
1 ξ0

1r 0 0
1

3
Mξ0

1
2
(4r2 + h2) + ξ0

1Π0



,

(5.59)
where Π0 = I3

(
ξ0
1 − ξ2

)
. Notice that this matrix is block diagonal and exhibits two blocks of size two

and six. The positivity of the block of size two requires that Mξ0
1

2
r2 > 0 and 4h2 − r2 > 0. The first

inequality is always satisfied when µmq < 0 and the second one amounts to

r2

h2
< 4, (5.60)

which yields the right hand side inequality in (4.2). We now study the positivity of the lower six
dimensional block of the stability form. Given that by Sylvester’s Law of Inertia the signature of a
diagonalizable matrix is invariant with respect to conjugation by invertible matrices, it can hence be
read out of the pivots of the matrix obtained by performing Gaussian elimination on this block. Indeed,
these pivots are

1

I1
,

1

I1
,

1

M
, p1, p2, p3, (5.61)
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where

p1 := Mξ0
1

2 3r2 − 2h2

r2 + h2
,

p2 := −I3ξ0
1ξ2 − ξ0

1
2
(

2

3
M

(r2 + h2)h2

3r2 − 2h2
+ (I1 − I3)

)
,

p3 := −I3ξ0
1ξ2 − ξ0

1
2
(
−1

3
M(r2 + h2) + (I1 − I3)

)
.

The first three are automatically positive. The positivity of p1 is equivalent to

2

3
<
r2

h2
,

which yields the left hand side inequality in (4.2) Finally, we study the positivity of the last two pivots
p2 and p3. The simultaneous positivity of p2 and p3 is equivalent to min {p2, p3} > 0. It is easy to check
that min {p2, p3} = p2, since the condition

p3 − p2 = Mξ0
1

2
r2 r2 + h2

3r2 − 2h2
> 0 (5.62)

is always satisfied due to (5.5) and the condition µmq < 0. Regarding the positivity of p2 there are two
possible cases:
1) ξ0

1 > 0, then

I3(ξ0
1 − ξ2) > ξ0

1

(
I1 +

2

3
M

(r2 + h2)h2

3r2 − 2h2

)
,

2) ξ0
1 < 0, then

I3(ξ0
1 − ξ2) < ξ0

1

(
I1 +

2

3
M

(r2 + h2)h2

3r2 − 2h2

)
,

and hence the positivity of p2 can be summarized as

sign(ξ0
1)I3ξ2 < −|ξ0

1 |
(
I1 − I3 +

2

3
M

(r2 + h2)h2

3r2 − 2h2

)
,

which coincides with (4.3), as required.

Stability study for the singular branch. We first notice that the matrix expression associated to
d2
(
H − Jξ

)
(z) is given by (5.56), where

B(x0) = − µ0q

2πh2
e3 and Hess (Bz) (x0) = −3µ0qµm

2πh4

 1 0 0
0 1 0
0 0 −2

 . (5.63)

Consequently, the pivots obtained by Gaussian elimination in the matrix expression of the stability

form d2
(
H − J (ξ1,ξ2)

)
(z0)

∣∣∣
W×W

are

1

M
,

3µ0qµm
πh4

,
1

M
,

1

M
,

1

I1
,

1

I1
, p1, p1, p2, p2, (5.64)

where

p1 = −3

2

µ0qµm
πh4

−Mξ2
1 , p2 = −µ0qµm

2πh2
− ξ1(ξ1I1 −Π0), and Π0 = I3(ξ1 − ξ2).
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The formal instability of the singular branch is caused by the fact that the pivots in (5.64) cannot simulta-
neously have all the same sign. Indeed, 1/M and 1/I1 are always positive which forces 3µ0qµm/πh

4 > 0.
This is in turn incompatible with p1 > 0 because that would require Mξ2

1 < 0, which is not possible.

Proof of part (ii) of the theorem.

Stability study for the regular branch. In order to prove the second part of Theorem 4.5, we follow
the same pattern that we used above. Let f ∈ C∞(R2) be the function such that

Bz(x, y, z) := f(x2 + y2, z) (5.65)

and f0 := f(x2 + y2, 0). Additionally,

f ′1 :=
∂f(v, z)

∂v

∣∣∣∣
v=x2+y2,z=0

, f ′′1 :=
∂2f(v, z)

∂v2

∣∣∣∣
v=x2+y2,z=0

, f ′′2 :=
∂2f(v, z)

∂z2

∣∣∣∣
v=x2+y2,z=0

,

and we recall that ξ0
1 = ±

(
− 2

M
µmf

′
1

)1/2

. We now compute the components of the matrix DB(x0).

Using the equations (2.7)–(2.9) and (5.65) we obtain

∂Bx
∂x

∣∣∣∣
x0

=
∂Bx
∂y

∣∣∣∣
x0

= 0,
∂By
∂x

∣∣∣∣
x0

=
∂By
∂y

∣∣∣∣
x0

= 0,
∂Bz
∂z

∣∣∣∣
x0

= 0,
∂Bz
∂x

∣∣∣∣
x0

= 2xf ′1,
∂Bz
∂y

∣∣∣∣
x0

= 2yf ′1.

In order to determine the remaining two components in DB(x0), we use the Ampère-Maxwell equation
∇×B = 0 in the absence of additional currents and time-varying electric fields in the region where the
body motion takes place. Indeed, ∇×B = 0 implies that

∂Bx
∂z

∣∣∣∣
x0

=
∂Bz
∂x

∣∣∣∣
x0

= 2xf ′1,
∂By
∂z

∣∣∣∣
x0

=
∂Bz
∂y

∣∣∣∣
x0

= 2yf ′1,

and hence,

DB(x0) =

 0 0 2xf ′1
0 0 2yf ′1

2xf ′1 2yf ′1 0

 .

By expression (5.51)

Tx0F(·)(e3) = Hess (Bz) (x0) =

 2f ′1 + 4x2f ′′1 4xyf ′′1 0
4xyf ′′1 2f ′1 + 4y2f ′′1 0

0 0 f ′′2

 . (5.66)

Using the same argument as in the proof of part (i) we use, without loss of generality, the relative
equilibrium point z0 of the form z0 = ((Iid, re1), (I3

(
ξ0
1 − ξ2

)
e3,Mrξ0

1e2)), where r > 0. The matrix

expression of d2
(
H − J (ξ01 ,ξ2)

)
(z0)

∣∣∣
W×W

is:
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

−2µm(f ′1 + 2r2f ′′1 ) + 3ξ0
1

2
M 0 0 0 0 0 0 0

0 Mr2ξ0
1

2
0 0 0 0 0 0

0 0
1

I1
0 0 0 ξ0

1 0

0 0 0
1

I1
0 0 0 −ξ0

1

0 0 0 0
1

M
0 0 ξ0

1r

0 0 0 0 0 −µmf ′′2 −2µmrf
′
1 0

0 0 ξ0
1 0 0 −2µmrf

′
1 µmf0 + ξ0

1Π0 0
0 0 0 −ξ0

1 ξ0
1r 0 0 µmf0 + ξ0

1(Mr2ξ0
1 + Π0)


,

(5.67)

where Π0 = I3
(
ξ0
1 − ξ2

)
. Notice that this matrix is block diagonal and exhibits two blocks of size two

and six. The positivity of the block of size two requires that µmf
′
1 < 0 and µm(2f ′1 + r2f ′′1 ) < 0 which

coincide with (4.4) and (4.5). We now study the positivity of the lower six dimensional block of the
stability form. As we did in the proof of part (i), we will read the signature of this block out of its

pivots, which are
1

I1
,

1

I1
,

1

M
, −µmf ′′2 , ξ0

1

(
Π0 − ξ0

1I1
)

+ µm

(
f0 + 4r2 f

′
1
2

f ′′2

)
, and µmf0 + ξ0

1Π0 − ξ0
1

2
I1.

The first three are automatically positive. The positivity of the fourth requires

µmf
′′
2 < 0, (5.68)

which corresponds to the inequality (4.6) in the statement. Finally, we study the positivity of the last
two pivots. Let

p1 := ξ0
1

(
Π0 − ξ0

1I1
)

+ µm

(
f0 + 4r2 f

′
1
2

f ′′2

)
(5.69)

and
p2 := µmf0 + ξ0

1Π0 − ξ0
1

2
I1. (5.70)

The simultaneous positivity of p1 and p2 is equivalent to min {p1, p2} > 0. It is easy to check that
min {p1, p2} = p1, since the condition

p2 − p1 = −4µmr
2 f
′
1
2

f ′′2
> 0 (5.71)

is satisfied due to (5.68). The positivity of p1 can be summarized as

sign(ξ0
1)I3ξ2 < −|ξ0

1 |
(

(I1 − I3) +
1

2
M

(
f0

f ′1
+ 4r2 f

′
1

f ′′2

))
,

which coincides with (4.7), as required.

Stability study for the singular branch. The matrix expression associated to d2
(
H − Jξ

)
(z) is

given by (5.56), where in this case

B(x0) = Bz(x0)e3 = f0e3 and Hess (Bz) (x0) =

 2f ′1 0 0
0 2f ′1 0
0 0 f ′′2

 . (5.72)
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The pivots obtained by Gaussian elimination in the matrix expression of the stability form d2
(
H − J (ξ1,ξ2)

)
(z0)

∣∣∣
W×W

are
p1, p2, p1, p1, p3, p3, p4, p4, p5, p5,

where

p1 =
1

M
, p2 = −µmf ′′2 , p3 =

1

I1
, p4 = −2µmf

′
1 −Mξ2

1 , p5 = µmf0 − ξ1(ξ1I1 −Π0), and Π0 = I3(ξ1 − ξ2).

The pivots p1 and p3 are automatically positive. The positivity of the pivots p2, p4, and p5 requires
that:

µmf
′′
2 < 0, (5.73)

µmf
′
1 < 0, (5.74)

ξ2
1 < −

2

M
µmf

′
1, (5.75)

sign(ξ1)Π0 >
I1ξ

2
1 − µmf0

|ξ1|
, (5.76)

which yields the conditions (4.9)–(4.11). We now derive the optimal stability condition (4.12). Let

g(ξ1) :=
(
I1ξ

2
1 − µmf0

)
/ξ1 in (4.11). It is easy to verify that the function g(ξ1) has a minimum at ξ̂+

1 =√
−µmf0/I1 and a maximum at ξ̂−1 = −

√
−µmf0/I1 provided that µmf0 < 0. Since the condition (4.10)

has to be satisfied, then f0/f
′
1 < 2I1/M also needs to hold. In that case, the choices ξ̂±1 = ±

√
−µmf0/I1

and the inequalities

Π0 > min
ξ1∈R+

{g(ξ1)} = g
(
ξ̂+
1

)
= 2
√
−µmf0I1, Π0 < max

ξ1∈R−
{g(ξ1)} = g

(
ξ̂−1

)
= −2

√
−µmf0I1

determine the largest possible stability region in the Π0 (and consequently the ξ2) variable, as required
in (4.12).

We now prove the claim in Remark 4.10 about the stability conditions (4.8)–(4.11) being also valid
for magnetic fields that do not satisfy ∇ × B = 0 as long as the conditions (4.13) are satisfied. It
suffices to notice that F(x0)ê3 = 0 by (4.13); this equality substituted in (5.53) yields the same second
derivative (5.56) obtained under the hypothesis ∇×B = 0. The stability conditions implied by the two
hypotheses hence coincide. �

5.6 Proofs of Propositions 4.12 and 4.13

Proof of Proposition 4.12

(i) It is a consequence of the Witt-Artin decomposition (see for example [OR04, Theorem 7.1.1]).

(ii) It is a consequence of the fact that the symplectic slice introduced by Marle [Mar84, Mar85],
Guillemin, and Sternberg [GS84] can be constructed by Riemannian exponentiation of a symplectic
tube. Since we need this construction in the proof of the following parts of the proposition, we briefly
recall it using the notation in Chapter 7 of [OR04].

The first step is the splitting of the Lie algebra g of G into three parts. The first summand is
gµ := Lie (Gµ). The equivariance of the momentum map J implies that Gm ⊂ Gµ and hence gm ⊂ gµ.
Hence we can fix an AdGm-invariant inner product 〈·, ·〉 on g (always available by the compactness of
Gm) and write

gµ = gm ⊕m and g = gm ⊕m⊕ q, (5.77)
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where m is the 〈·, ·〉-orthogonal complement of gm in gµ and q is the 〈·, ·〉-orthogonal complement of gµ
in g. The splittings in (5.77) induce similar ones on the duals

g∗µ = g∗m ⊕m∗ and g∗ = g∗m ⊕m∗ ⊕ q∗. (5.78)

Each of the spaces in this decomposition should be understood as the set of covectors in g∗ that can be
written as 〈ξ, ·〉, with ξ in the corresponding subspace. For example, q∗ = {〈ξ, ·〉 | ξ ∈ q}.

The second ingredient in the construction of the symplectic tube comes from noting that the compact
(by the properness of the action) isotropy subgroup Gm acts linearly and canonically on (W,ωW ) with
momentum map JW : W → g∗m given by

〈JW (w), η〉 =
1

2
ωW (ηW (w), w) , η ∈ gm.

It can be shown [OR04, Proposition 7.2.2] that there exist Gm–invariant neighborhoods m∗r and Wr of
the origin in m∗ and W , respectively, such that the twisted product Yr := G×Gm (m∗r ×Wr) is endowed
with a natural symplectic form ωYr whose expression can be found in (7.2.2) of [OR04]. The Lie group
G acts canonically on (Yr, ωYr ) by g · [h, η, w] = [gh, η, w], for any g ∈ G and [h, η, w] ∈ Yr, and has
a momentum map JYr : Yr → g∗ associated given by the so called Marle–Guillemin–Sternberg normal
form:

JYr ([g, η, w]) = Ad∗g−1 (µ+ η + JW (w)) , [g, η, w] ∈ Yr.

The G–symplectic manifold (Yr, ωYr ) is called a symplectic tube of (M,ω) at the point m. This denom-
ination is justified by the Symplectic Slice Theorem [Mar84, Mar85, GS84] that proves the existence
of a G–equivariant symplectomorphism φ : U → Yr between a G–invariant neighborhood U of m in
M and Yr satisfying φ(m) = [e, 0, 0]. The symplectic slice S in the statement of the proposition is ob-
tained [OR04, Theorem 7.4.1] as S = φ−1 (SYr ), where SYr := {[e, 0, w] | w ∈Wr} and, more explicitly,
as S = {Expm(w) | w ∈Wr}, with Expm the Riemannian exponential associated to a Gm–invariant
metric. The identity TmS = W is a consequence of the fact that T0Expm = Id.

(iii) Since m ∈M is a relative equilibrium, we have d
(
H − Jξ

)
(m) = 0. This implies that dHξ

S(m) =

d
(
H − Jξ

)
(m)

∣∣
TmS

= 0 and hence XHξS
(m) = 0.

(iv) This statement is a consequence of the combination of (ii) and (iii) with the following lemma.

Lemma 5.2 Let (M,ω) be a symplectic manifold, H ∈ C∞(M), and XH the corresponding Hamiltonian
vector field. Suppose that m0 ∈M is an equilibrium point of XH , that is XH(m0) = 0 and consequently
dH(m0) = 0. Then, the linearization X ′ of XH at m0 is a Hamiltonian vector field on the symplectic
vector space (Tm0

M,ω(m0)) with Hamiltonian function Q ∈ C∞(Tm0
M) given by

Q(v) =
1

2
d2H(m0)(v, v). (5.79)

Proof of the Lemma. Note V = Tm0M and ωV = ω(m0). Let v, w ∈ V arbitrary and let {c(s)|s ∈ R}
be a curve such that v = d

ds

∣∣
s=0

c(s). Then if Ft is the flow of Xh, we write

ωV (X ′(v), w) =
d

dt

∣∣∣∣
t=0

ω(m0) (Tm0Ft · v, w) =
d

dt

∣∣∣∣
t=0

ω(m0)

(
d

ds

∣∣∣∣
s=0

Ft(c(s)), w

)
, v, w ∈ V.

(5.80)
We now take a Darboux chart (U, φ) [AM78, page 75] around the point m0. Recall that in Darboux
coordinates, the symplectic form ωU is constant. Additionally if φ : U −→ φ(U) ⊂ Rn, let u ∈ Rn be
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such that Tm0φ · w = (φ(m0), u) ∈ φ(U)× Rn = T (φ(U)). Now, since φ∗ωU = ω|U , then (5.80) can be
written as

d

dt

∣∣∣∣
t=0

ω(m0)

(
d

ds

∣∣∣∣
s=0

Ft(c(s)), w

)
=

d

dt

∣∣∣∣
t=0

ωU

(
d

ds

∣∣∣∣
s=0

φ · Ft(c(s)), Tm0φ · w
)

= ωU

(
d

ds

∣∣∣∣
s=0

Tc(s)φ ·XH(c(s)), (φ(m0), u)

)
=

d

ds

∣∣∣∣
s=0

ωU
(
Tc(s)φ ·XH◦φ−1◦φ(c(s)), (φ(c(s)), u)

)
=

d

ds

∣∣∣∣
s=0

ωU
(
XH◦φ−1(φ(c(s))), (φ(c(s)), u)

)
=

d

ds

∣∣∣∣
s=0

d
(
H ◦ φ−1

)
(φ(c(s))) · (φ(c(s)), Tm0φ · w)

= d2
(
H ◦ φ−1

)
(φ(m0)) ((φ(m0), Tm0

φ · v), (φ(m0), Tm0
φ · w))

= d2H(m0)(v, w) = dQ(v) · w.

Consequently, iX′ωV = dQ, as required. H

(v) The hypothesis Tm (Gµ ·m) = Tm (G ·m) implies that q · m := {ξM (m) | ξ ∈ q}; this fact and
the construction of the Witt–Artin decomposition (see for example the expression (7.1.11) in [OR04])
ensure that (4.15) holds. In order to prove (4.16), notice that for any w1, w2 ∈W

ωW (XQ(w1), w2) = dQ(w1) · w2 = d2Hξ(m)(w1, w2) = ω(m)(X ′Hξ(w1), w2)

= ω(m) (PWX ′Hξ(w1), w2) + ω(m) ((I− PW )X ′Hξ(w1), w2)

= ω(m) (PWX ′Hξ(w1), w2) = ωW (PWX ′Hξ(w1), w2) ,

where we used that (I − PW )X ′Hξ(w1) ∈ Wω and hence ω(m)
(
(I− PW )X ′Hξ(w1), w2

)
= 0. Since

w1, w2 ∈W are arbitrary, the equality ωW (XQ(w1), w2) = ωW
(
PWX ′Hξ(w1), w2

)
implies that

XQ(w) = PWX ′Hξ(w), ∀w ∈W,

which is equivalent to (4.16).

(vi) Given the local and group invariant character of this statement, we will prove this statement using
the so called reconstruction differential equations [Ort98, RWL02, OR04] that determine the Hamiltonian
vector field associated to a G–invariant Hamiltonian h ∈ C∞(Yr) in the symplectic tube Yr. Consider
first π : G × m∗r ×Wr −→ G ×Gm (m∗r ×Wr) = Yr the orbit projection; the G–invariance of H implies
that the composition H ◦ π can be understood as a Gm–invariant function on G × m∗r ×Wr that does

not depend of the first factor, that is, H ◦ π ∈ C∞ (m∗r ×Wr)
Gm . The reconstruction equations show

that for any [g, ρ, w] ∈ Yr,

XH([g, ρ, w]) = T(g,ρ,w)π(Xm(g, ρ, w), Xm∗r
(g, ρ, w), XW (g, ρ, w)),

where Xm(g, ρ, w), Xm∗r
(g, ρ, w), and XWr

(g, ρ, w) are determined by the expressions

Xm(g, ρ, w) = TeLg(Dm∗r
(H ◦ π)(ρ, w)), (5.81)

XWr
(g, ρ, w) = ω]W (DWr

(H ◦ π)(ρ, w)), (5.82)

Xm∗r
(g, ρ, w) = Pm∗

(
ad∗Dm∗r (H◦π)ρ

)
+ ad∗Dm∗r (H◦π)JW (w), (5.83)
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where Pm∗ : g∗ → m∗ is the projection according to the splitting (5.78) and ω]W : W ∗ → W is the
isomorphism associated to the symplectic form ωW in W .

We now assume that XQ is spectrally unstable, which implies by part (iv) that the Hamiltonian
vector field XHξS

on the symplectic slice SYr = {[e, 0, w] | w ∈ Wr} exhibits an unstable equilibrium at

[e, 0, 0]. Notice now that the Hamiltonian vector field XHξS
is given by the projection onto Yr via Tπ of

the vector field (0, 0, X
HξS
Wr

) in G×m∗r ×Wr determined by

X
HξS
Wr

= ω]W (DWr
(H ◦ π) (0, w))− (Pgmξ)W (w) = XH

W (e, 0, w)− (Phξ)W (w),

where Pgm : g → gm is the projection according to the splitting (5.77), (Pgmξ)W ∈ X(Wr) is the
infinitesimal generator associated to Pgmξ ∈ gm using the Gm–action on Wr, and XH

W is the vector
field in (5.82) that determines the dynamics induced by H on the space Wr. The instability of XHξS

at

[e, 0, 0] implies the same feature for XH
W at (e, 0, 0) and hence the K–instability of the relative equilibrium

[e, 0, 0] of XH , for any subgroup K ⊂ G. �

Proof of Proposition 4.13

(i) It is a straightforward consequence of the chain rule as dH(g, µ) = 0 implies that dHg(e, µ) = 0.

(ii) Relation (4.17) is a consequence of the following general fact about Hessians: let m ∈ M and
n ∈ N , with M and N smooth manifolds and let ψ : M → N be a smooth map such that ψ(m) = n.
Let f ∈ C∞(N) with df(n) = 0. Then d2(ψ∗f)(m) = T ∗mψ(d2f(n)), that is, for any v, w ∈ TmM :

d2(ψ∗f)(m)(v, w) = d2f(n)(Tmψ · v, Tmψ · w).

In order to establish relation (4.18) note that the map Φg : g × g∗ −→ T(g,µ) (G× g∗) is a symplecto-
morphism and hence a Poisson map. Expression (4.18) follows from [OR04, Proposition 4.1.19].

(iii) By Lemma 5.2, the Hamiltonian vector field XQg is determined by the relation iXQgω(e, µ) = dQg

or, more explicitly, by

ω(e, µ) (XQg (ξ, τ), (η, ρ)) = dQg(ξ, τ) · (η, ρ), for any (ξ, τ), (η, ρ) ∈ g× g∗.

Using the expression of the canonical symplectic form of T ∗G in body coordinates (see for instance [OR04,
Expression (6.2.5)]), this equality can be rewritten as

〈ρ, πg (XQg (ξ, τ))〉 − 〈πg∗ (XQg (ξ, τ)) , η〉+ 〈µ, adπg(XQg (ξ,τ))η〉 = 〈Hess(ξ, τ), (η, ρ)〉. (5.84)

Let now prg : g × g∗ → g × g∗ and prg∗ : g × g∗ → g × g∗ be the maps defined by prg(η, ρ) := (η, 0)
and prg∗(η, ρ) := (0, ρ), for any (η, ρ) ∈ g × g∗, and ig : g → g × g∗ and ig∗ : g∗ → g × g∗, the
canonical injections. Since (5.84) holds for (η, ρ) ∈ g× g∗ arbitrary, we apply it to vectors of the form
prg(η, ρ) = (η, 0) and prg∗(η, ρ) = (0, ρ) and we obtain the following two equalities

〈Hess(ξ, τ),prg∗(η, ρ)〉 = 〈πg∗(η, ρ), πg (XQg (ξ, τ))〉,
〈Hess(ξ, τ),prg(η, ρ)〉 = −〈πg∗ (XQg (ξ, τ)) , πg(η, ρ)〉+ 〈µ, adπg(XQg (ξ,τ))πg(η, ρ)〉.

Since (η, ρ) ∈ g× g∗ in these expressions are arbitrary, they can be rewritten as:

pr∗g∗Hess(ξ, τ) = π∗g∗ (πg (XQg (ξ, τ))) , (5.85)

pr∗gHess(ξ, τ) = −π∗g (πg∗ (XQg (ξ, τ))) + π∗g

(
ad∗
πg(XQg (ξ,τ))(µ)

)
. (5.86)
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We now apply πg∗ and πg to both sides of (5.85) and (5.86), respectively, and we notice that πg∗ ◦pr∗g∗ =
πg∗ , πg ◦ pr∗g = πg, π∗g = ig, π∗g∗ = ig∗ , πg ◦ ig = idg, and πg∗ ◦ ig∗ = idg∗ . We obtain

πg (XQg (ξ, τ)) = πg∗Hess(ξ, τ), (5.87)

πg∗ (XQg (ξ, τ)) = −πg (Hess(ξ, τ)) + ad∗πg∗Hess(ξ,τ)µ, (5.88)

which is equivalent to (4.19). �

5.7 Linear stability and instability of the standard and generalized orbitron
relative equilibria

The linearization for the regular branches. The goal in this paragraph is determining the linear
Hamiltonian vector fields XQ in the stability space W used in the proof of Theorem 4.5 by using the
expression (4.16) in Proposition 4.12. Notice that this is indeed possible due to the Abelian character
of our symmetry group that ensures that in this situation Gµ = G and hence the coincidence of the
tangent spaces Tm (Gµ ·m) and Tm (G ·m) that is necessary as a hypothesis in this statement. We start
by writing down the decomposition (4.15) that in this case can be achieved by noting that

Wω = span {τ 1, τ 2, τ 3, τ 4} (5.89)

with τ 1 = (e3, re2,0,0) τ 2 = (−e3,0,0,−Mrξ0
1e1), τ 3 = (0,0,0, e1) τ 4 = (0, e1,−Mrξ0

1e3,0). If we
use as a basis for W the vectors introduced in (5.55) and for Wω the ones those that we just described,
it is easy to see that the matrix expressions of the inclusion iW : W ↪→ Tz0

(SE(3)× se(3)∗) ' R12 and
the projection PW : Tz0 (SE(3)× se(3)∗) ' R12 −→W , where R12 is endowed with the canonical basis,
are given by

iW = (u′1|u′2|u′3|u′4|u′5|u′6|u′7|u′8) , (5.90)

PW =

(
e′8|e′7|e′2|e′1| −

1

r
e′2|e′6|e′3|e′4| −

1

Mrξ0
1

e′2|0|e′5
)
, (5.91)

where the apostrophes stand for the transposition operation and the vertical indicate matrix concatena-
tion. The linearization of the Hamiltonian vector field associated to the augmented Hamiltonian at the
relative equilibria of the standard orbitron can be immediately obtained by using the expression (4.22)
together with the Hessian already computed in (5.50) in the context of the proof of Theorem 4.5. The
resulting expression is inserted in (4.16) using the injection (5.90) and the projection (5.91) and yields
the following matrix for XQ:



0 −ξ01r 0 0 0 0 0 0

ξ01r
4h2 − r2

r2 + h2
0 0 0 0 0 0 0

0 0 0 ξ01 − Π0

I1
0 0 0 − 1

3
ξ01

2
M(r2 + h2)

0 0 −ξ01 +
Π0

I1
0 0 −ξ01

2
Mr − 1

3
ξ01

2
M(r2 + h2) 0

0 0 −Mξ01r

I1
0 0 ξ01

2
M

2h2 − 3r2

r2 + h2
−2ξ01

2
Mr 0

0 0 0 0
1

M
0 0 ξ01r

0 0 0
1

I1
0 0 0 −ξ01

0 0
1

I1
0 0 0 ξ01 0



,

(5.92)
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where Π0 = I3(ξ0
1 − ξ2). An analog expression can be obtained for the linearization XQ at the regular

relative equilibria of the generalized orbitron:

0 −ξ01r 0 0 0 0 0 0

− 4µm

Mrξ01

(
2f ′1 + r2f ′′1

)
0 0 0 0 0 0 0

0 0 0 ξ01 − Π0

I1
0 0 0 −µmf0

0 0 −ξ01 +
Π0

I1
0 0 2µmrf

′
1 −µmf0 0

0 0 −Mξ01r

I1
0 0 µmf

′′
2 4µmrf

′
1 0

0 0 0 0
1

M
0 0 ξ01r

0 0 0
1

I1
0 0 0 −ξ01

0 0
1

I1
0 0 0 ξ01 0



.

The linearization for the singular branches. The same scheme can be reproduced for the singular
branches by using the stability space introduced in (5.57). In this case, it can be shown that Wω =
span {τ 1, τ 2}, with τ 1 = (e3,0,0,0) and τ 2 = (0,0, e3,0), which yields the following matrix expressions
for the inclusion and the projection:

iW = (u′1|u′2|u′3|u′4|u′5|u′6|u′7|u′8|u′9|u′10) ,

PW = (e′10|e′9|0|e′8|e′7|e′2|e′6|e′5|0′|e′4|e′3|e′1) .

Finally, the matrix expression for XQ at the singular relative equilibria of the standard orbitron is:



0 −3
µ0µmq

πh4
0 0 0 0 0 0 0 0

1

M
0 0 0 0 0 0 0 0 0

0 0 0 −ξ1 0 0
3

2

µ0µmq

πh4
0 0 0

0 0 ξ1 0 0 0 0
3

2

µ0µmq

πh4
0 0

0 0 0 0 0 −ξ1 +
Π0

I1
0 0

1

2

µ0µmq

πh2
0

0 0 0 0 ξ1 −
Π0

I1
0 0 0 0

1

2

µ0µmq

πh2

0 0
1

M
0 0 0 0 −ξ1 0 0

0 0 0
1

M
0 0 ξ1 0 0 0

0 0 0 0
1

I1
0 0 0 0 −ξ1

0 0 0 0 0
1

I1
0 0 ξ1 0



,

(5.93)
where Π0 = I3(ξ1 − ξ2). An analog expression can be obtained for the linearization XQ at the singular

relative equilibria of the generalized orbitron:
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

0 µmf
′′
2 0 0 0 0 0 0 0 0

1

M
0 0 0 0 0 0 0 0 0

0 0 0 −ξ1 0 0 2µmf
′
1 0 0 0

0 0 ξ1 0 0 0 0 2µmf
′
1 0 0

0 0 0 0 0 −ξ1 +
Π0

I1
0 0 −µmf0 0

0 0 0 0 ξ1 −
Π0

I1
0 0 0 0 −µmf0

0 0
1

M
0 0 0 0 −ξ1 0 0

0 0 0
1

M
0 0 ξ1 0 0 0

0 0 0 0
1

I1
0 0 0 0 −ξ1

0 0 0 0 0
1

I1
0 0 ξ1 0



. (5.94)

References

[AM78] Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Addison-Wesley, Read-
ing, MA, 2nd edition, 1978.

[DE99] Holger R. Dullin and R. W. Easton. Stability of levitrons. Physica D., 126:1–17, 1999.

[DMM92] M. Dellnitz, I. Melbourne, and J. E. Marsden. Generic bifurcation of Hamiltonian vector
fields with symmetry. Nonlinearity, 5:979–996, 1992.

[Dul04] Holger R. Dullin. Poisson integrator for symmetric rigid bodies. Regular and Chaotic Dy-
namics, 9(3):255–264, 2004.
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