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Maple-exploring of a Free Flywheel
Suspended by Superconductive Bearing

The software Maple as a powerful tool to
analyze complicated non-linear dynamic systems is
used to explore parametrical  conditions
guaranteeing the stability of resting or rotating free
magnetically levitated flywheel’s rotor, to solve the
Cauchy problem and to build the phase portraits.
The dynamical model is derived on the basis of
analytical electromechanics with taking into
account six degrees of freedom of a free rotor, the
constancy of full magnetic fluxes coupled with
immobile and rotor’s superconducting rings,
Lyapunov stability theorems, and Euler equations
of a free body dynamics.
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Maple- nociigkeHHs1 BiIbHOTO pOTOpPa HA
HAANPOBIIHUX MiJIIUITHUKAX

Cucmema xomn tomepnoi mamemamuxu Maple
5K 3aciO aHanizy CKIAOHUX HENIHIUHUX OUHAMIYHUX

cucmem 3acmoco8ana ons 00cniddcen s
napamempuyHux — yMos, wo 2apanmyomy
CMIUKICMb  BIIbHO20  MACHIMHO  J1eGIMyH4020

pomopa y cmaui pisHosazu abo npu obepmanHi,
ona poss’sizanns 3a0adi Kowi i1 0na nobyoosu
¢asoeux  nopmpemis.  [unamivna  mooeiw
ompumana Ha OCHO81 aHanimuyHoi
eNeKMPOMEXAHIKU 3 BPAXYBAHHAM WeECMU Cenenie
€c60000U  8IILHO20 pPOMOpPA, CMANOCMI NOBHO2O
MAZHIMHO20 NOMOKY, 38 ’A3AH020 3 HEPYXOMUMU
HAONPOBIOHUMU KITbYsAMU Ma Kilbysimu pomopa,
meopem Jlanynosa npo cmilikicms ma OUHAMIYHUX
pisnsanb Etinepa 0ns éinvnozo mina.

Knrwouosi  crnosa: naonposiona
BLIbHUL MAXOBUK, OUHAMIKA.

Jnesimayis,

Crartio npeactasus wieH-kop. HAHY, a. ¢i3.-mat. 1., npod. Jlsmko C.1.

I. INTRODUCTION

Magnetic bearings become a very important
element for renewable energy sources, end-use
energy efficiency, environmentally preferred
advanced generation, and flywheel energy storage.
As it is expected, devices using magnetic bearings
can be widely implemented, from automobile or
helicopter engines to power reserve flywheels to level
peak energy consumptions.

We developed a new type of magnetic bearings
based on the “Magnetic Potential Well” (MPW)
phenomenon [1, 2]. For two constantly oriented
closed superconducting loops, the MPW-
manifestation signifies that with nearing of these
spaced loops, their magnetic attractive force does not
increase as usually but decreases, becomes zero and
changes into the repulsive magnetic force before the
spacing between loops equals zero. A similar picture
can be observed in a permanent magnet-closed zero
resistant loop pair. The MPW can be also realized in
a system with many magnets.

Magnetic bearings have many advantages over
ball, gas, and hydro bearings: practically unlimited
operating time, absence of a lubricant, simplicity and

reliability of operation, etc. But many applications of
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magnetic bearings require solving some problems.
One of them is the stability of the free resting or
rotating rotor. Trials to suspend a body in the free
equilibrium under action of magnetic forces are
fruitless on the basis of Earnshaw’s theorem [3].
There are only three exceptions not covered by this
theorem. One of them is automation allowing
transforming an unstable dynamic system into the
stable system by e.g. feed-back control. The second is
diamagnetism of a substance particularly bulk
superconductors [4 - 6]. And finally, the MPW based
on zero resistance of a closed current carrying loop
[1, 2]. It should be noted that any of these exceptions
assists but doesn’t guarantee the free body rest or
rotation stability.

Not only stability but also centring force levels
are important in bearing applications. The stiffness of
magnetic bearing must be on the level of commercial
bearings operating with radial stiffness no less than
10°-10” N/mm. Possibilities to satisfy these levels by
known magnetic bearings do not look optimistic.
Really, the top pressure of “warm” magnetic bearings
with automation is restricted from above app. by

2-10° N/m® determined by the magnetic saturation
induction of 2-2.5 Tesla. For characteristic bearing
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size of 0.1 m it gives magnetic bearing stiffness of

2-10° N/m that corresponds with published data [7].

The top pressure of 10°-10*N/m? for passive
superconducting bearings based on the ideal
diamagnetism is restricted by the first critical
magnetic field, which is less than 0.2 Tesla for all
known superconductors. This is too low value to be
estimated as practicable.

In contrast to known magnetic bearings, instead
of relying on the superconductor diamagnetism or
automatic control to keep the air gap within required
limits, we propose to use the MPW phenomenon.
Manifestation of this phenomenon requires ideal
electric conductivity in a closed loop of any shape.
This allows using existing high current density
superconductors e.g. niobium-titanium, niobium-
germanium, and niobium-tin  joining.  Super-
conducting magnets using these superconductors and
operating in the persistent current mode are in
abundance. They are capable of generating constant
magnetic field no less than 10-20 Tesla without
electric losses that is unreachable in all other
magnetic bearings. Before MPW these magnets were
used as high magnetic field sources only. Now their
applications can be MPW-bearings with pressure of
10® N/m? and stiffness of 10" N/m.

II. FLYWHEEL MODEL

A. Coordinate Systems

A flywheel is modeled by two stator’s coaxial
immobile  superconductive rings magnetically
interacting with two sets of N small planar
superconductive circular loops (dipoles) equally
shifted in relation to the rotor’s axis (see Figure 1).
The MPW is realized in a set of NV dipoles and the
nearer superconductive immobile ring. It means that
at some rotor/stator coaxiality position, the electric
current in each dipole is zero because its full
magnetic flux (magnetic linkage) that is constant on
the basis of the Faraday’s electromagnetic induction
law is created by the nearer immobile ring, yet at any
another rotor/stator geometrical configuration this
current is non-zero to satisfy the magnetic linkage
constancy.

To determine the potential energy of magnetic
interaction, it is convenient to introduce some
trihedrons. The origin O of the immobile trihedron

- = -

Oxyz with unit vectors i,,i,,i; is the symmetry

center of two coaxial superconductive rings of radius
a, and the vertical rings’ symmetry axis Oz is parallel
to the gravity force.
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The origin O, of the second trihedron Oxyz,

with unit vectors ¥, %, % coincides with a free rotor

mass center so that axis O;z; is directed along the
rotor’s symmetry axis. As an example, the case N =4
is shown in Figure 1. The free rotor is described by
six degrees of freedom. The first three are Cartesian
Oxyz-coordinates x, y, z of the point O,. Non-

dimensional linear coordinates X, Y, and Z are
derived by division of a corresponding Cartesian
Oxyz-coordinate by value a. The other three degrees
of freedom are the Euler-Krylov angles x4, x5, x¢
determining the rotor space orientation and x, is
rotation relatively axis Ox;, xs is rotation relatively
axis Oy, and x¢ is rotation relatively axis O,z at

that.
z

Fig. 1. Sketch of the flywheel.

B. Potential Energy of Gravity and Magnetic
Interactions

The potential energy U of the flywheel dynamic
system consists of two parts. One is the gravity
represented by the rotor’s constant weight force. The
second is the sum of magnetic interactions of each j-
immobile superconducting ring (f =1,2) and N dipoles
of upper or lower part of the rotor. Magnetic
interactions between dipoles are ignored as
infinitesimal. Dipoles are supposed to be zero
resistance closed loops with taking into account the
constancy of their magnetic linkages as a
consequence of zero resistance of each dipole’s loop.

)41
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The MPW-position that is at our disposal
corresponds to the coincidence of axes Oz and O,z .
At this coaxiality position, the rotor’s weight G = mg
where m is its mass and g is the gravity acceleration
can be balanced at Z =0 by the difference in
attractive forces of the upper part of superconducting
loops (one immobile and N on the rotor top) directed
above and the lower similar part directed downward.
Such coaxial equilibrium can be accomplished e.g.
by the adjusted parameter k = W,W," = const > 1 that is
ratio between the upper immobile superconducting
ring magnetic linkage W, and lower ring linkage W, .

Below we use the matrix M determining a
relative space orientation of the trihedrons Oxyzand

O,x,y,z, (seee.g. [8], p.119) in the expanded form

CsCoy  CuS¢ +8,5:C5 848 —C485Cq
M =|—-cysg €,0 = 5,555 S4C6 +Cy8585c | (1)
S5 — 5,4Cs C4Cs

Where c, =COoS8Xx,, §, = sin X, and elernents Of the

first row present projections of the unit vector on axis
lel etc.
Introducing radius vector g of the point O,

vectors 1, A, Rl,ﬁ,ljl forming the closed polygon
for the upper part of magnetically interacting loops
(see Figure 1) and similar vector polygon for the
lower part of magnetically interacting loops (not
depicted in Figure 1), and using (1) for the
components of the vectors connecting arc’s elements
of rings and dipole centers after transformations, one
can obtain

R, = X = (=1) ha,, + A(all cost, +a, sint, ),
R, =Y —(-1)' hay, + A(a12 cost, +a,, sint, ),
Ry =Z-(-1) hay + A(a13 COSt; +aysint; )+ (-1 H

2)
where index j = 1 is applied to the upper and j = 2 to
the lower parts of loops, parameter /4 is a non-
dimensional half-distance between rotor’s loops, H is
the same for the immobile rings, and the angle ¢;
together with non-dimensional shift 4 determine a
dipole-place on the rotor.

The mutual inductance between a ring and a
dipole can be derived as the magnetic flux generated
by the unit electric current in the corresponding ring
and piercing this dipole area. Assuming that each
dipole plane is perpendicular to the rotor axis and its
area equals S, taking into account known formulae
for the ring magnetic induction (see e.g. [9]) and (2),
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for the non-dimensional ring-dipole mutual
inductance the following formula takes place
Lj =(bjl (a31le +a32Rj2)+bj2a33J (3)
where

R, l+7> +R®
by =—| =Kk +—5—E(k))

Ty (I-r;)" +Rj;

1-r} =R,

b,=K(k,)+ : E(k,) 4)

(1-r,)" + R

2 2
i =1/le +R_].2

where K(k,), E(k;) are full elliptic integrals of the

modulus

Ky =2yr (1477 + R

Any non-dimensional ring-dipole inductance Lo
corresponding to the MPW-position is determined by
zero values of all non-dimensional degrees of

freedom (X =Y =Z=x, =x,=x,=0)in(3).

On the basis of analytical electromechanics [10],
the magnetic energy represented as a function of the
magnetic linkages and mechanical coordinates
(degrees of freedom) is the potential energy of an
electromechanical dynamic system. Therefore, with
taking into account the said suppositions and
smallness in sizes of dipoles loops, one can derive the
formula for the potential energy u in the non-
dimensional form

)

&

u=UU,' =§ : (6)

J=1

N
E (Ly-L,)* +U,Z

i=1

£

where characteristic magnetic energy U, and non-
dimensional gravity energy U, are respectively

2
* L\2am I, : 2am L,

-2

(7

III. THE STABILITY PROBLEM

One of essential problems is the stability problem
for either equilibrium or spinning of a levitated rotor.
This problem can be investigated without
corresponding dynamic equations analysis on the
basis of the Lyapunov’s theorem about partial
stability [11]. This problem is reduced to finding the
positivity conditions for the potential energy
expanded into the Taylor series in corresponding
variables. In our case using Maple [12], the Taylor
series for N= 4 dipole can be written as
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u =Bl(‘X2 +7? )+ B,Z* + By(x] +x2). (8) axis Oyxy, Oy, and O,z; respectively, and ¢ is the

where expressions for values B; (i=1,..,3) are too
cumbersome functions of the geometrical parameters
and here are omitted. In accordance with Lyapunov’s
theorem, the sufficient conditions of the free
equilibrium stability are equivalent to positive all
parameters B;. As simulations show, this requirement
can be satisfied by a relevant choice of the system
parameters.

IV. THE DYNAMICS MODEL

The potential energy determined above and Euler
equations of a free body dynamics [8] allow deriving
the starting equations of the rotor motion in the non-
dimensional form (function u is determined by (6))

d°X __, o
dr> box
d*Y ou
> = -4 —>
dt oY
2
L
dt 0Z
dn ou
—1+k1n3n2 -4, —,
dt ox,
dn ou
_2_k1n1n3 =-4, —,
dt 0x
dn
—=0, ©
dt
dx, . dx;
N, =COS X5 COS X, ?+smx6 —t,
. dx, dx;
n, = —COS X5 Sin X, ?H:osx6 ?,
) dx, dx,
l’l3 = Sll’l)C5 74_?

Here non-dimensional parameter 4 =U, Qnazsz )l

is ratio between magnetic characteristic energy U,
and characteristic kinetic energy (w is the
characteristic angular velocity); non-dimensional
parameter 4, =U,(I,w’L)™ determines ratio between
magnetic characteristic energy U, and rotating kinetic
energy with inertia moment /; relatively axis Ox; or
O,y1; non-dimensional parameter k, = (13 -1 )Il_1 is
ratio of the rotor main central inertia moments ( 7, is

the inertia moment relatively axis O,z)); n,, ny, n3 are
non-dimensional angular velocity components on

non-dimensional time.

Expressions for partial derivatives of the non-
dimensional potential energy u in (9) are too
cumbersome and therefore omitted.

The conservative 12"-order system (9) with
potential energy determined above is too complicated
to be analyzed by known analytical methods. In this
case the software Maplel1 [12] is more relevant.

We have developed Maple-based tools that give
full realization of the free rotor dynamics. As an
example, we represent numerical solutions for the
Cauchy problem and phase portraits building. The
plots of solutions and phase portraits shown in
Figures 2-5 depict the case of assumed H —h =0.1,

A4 =1, 4, =1, k,=0, U, =0 and the following
X(0)=0.05, X(0)=0,

initial  conditions:

Y(0)=0, Y(0)=0.01, Z(0)=0.01, Z(0)=0,
x(0)=0,

x,(0)=0, x;(0)=0,
n,(0)=0, n,(0)=100.

n(0)=0,

7 =
2Hpp) O 42 3

Fig. 2. Phase portrait £, \/ X(£)* +Y(1)* , x,(?).

0,05
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0,01

Fig. 3. Radial separation versus time.
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Fig. 5. Phase portrait of n, n,, n,.

V. CONCLUSIONS

The free rotor dynamics problem is considered in
the parts of mathematical model construction,
substantiation of the free equilibrium stability (i.e.
levitation), and dynamic analysis on the basis of the
modern computer tools. The mathematical model
taking into account six degrees of freedom proved to
be complicated non-linear conservative dynamic
system of the 12™-order, an analytically unsolvable
problem.

The free equilibrium stability i.e. levitation
derived on the Lyapunov’s theorem is possible by the
MPW-manifestation and relevant choice of the
magnetic and geometrical parameters.

As examples demonstrate, the software Maple
proved to be the effective computer tool to analyze
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the free rotor dynamics. This approach can be useful
to develop superconducting bearings [13-16].
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