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This work studies approximation based on single-hidden-layer feed-
forward and recurrent neural networks with randomly generated internal
weights. These methods, in which only the last layer of weights and a few hy-
perparameters are optimized, have been successfully applied in a wide range
of static and dynamic learning problems. Despite the popularity of this ap-
proach in empirical tasks, important theoretical questions regarding the rela-
tion between the unknown function, the weight distribution, and the approx-
imation rate have remained open. In this work it is proved that, as long as
the unknown function, functional, or dynamical system is sufficiently regu-
lar, it is possible to draw the internal weights of the random (recurrent) neural
network from a generic distribution (not depending on the unknown object)
and quantify the error in terms of the number of neurons and the hyperpa-
rameters. In particular, this proves that echo state networks with randomly
generated weights are capable of approximating a wide class of dynamical
systems arbitrarily well and thus provides the first mathematical explanation
for their empirically observed success at learning dynamical systems.

1. Introduction. This article studies the approximation of an unknown map H*: X —
R™ by a random (recurrent) neural network. More specifically, when X = RY we study
approximations of the function H* by single-hidden-layer feedforward neural networks
H{;‘V’g (z) =Wo(Az + ¢) with A e My 4, ¢ € R randomly drawn (not using any knowl-
edge about H*), o : R — R¥ a given activation function (obtained as the componentwise
application of a map ¢ : R — R) and W € M],,, y a matrix that can be trained in order to
approximate H* as well as possible. Random neural networks of this type have been applied
very successfully in a variety of settings, we refer in particular to the seminal works on ran-
dom feature models [33] and extreme learning machines [18]. We refer to this case as the
static situation and will come back to it later on. In contrast, we speak about the dynamic
situation when H* takes as inputs sequences, that is, X C (R4)Z-.

A particularly important family of approximants that we study in the dynamic situation are
reservoir systems, that is, H(z) =yg forze X C (Rd)Z*, where yq is the solution (which
exists and is unique under suitable hypotheses) of the state-space system

{Xz =F(X;—1,%),

M Y =h(X), te€Z_,

where the state or reservoir map F is (for the most part) randomly generated and only the
static observation or readout map h is trained in specific learning tasks. An important par-
ticular case of (1) are echo state networks (ESNs) [19, 26-28]. These are recurrent neural

Received March 2020; revised February 2021.

MSC2020 subject classifications. 60-08, 60H25, 41A30, 93E35.

Key words and phrases. Neural networks, approximation error, reservoir computing, echo state networks, ran-
dom function approximation.

28


https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/22-AAP1806
http://www.imstat.org
mailto:gonon@math.lmu.de
mailto:Lyudmila.Grigoryeva@warwick.ac.uk
mailto:Juan-Pablo.Ortega@ntu.edu.sg
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

APPROXIMATION BOUNDS FOR RESERVOIR COMPUTING 29

networks that map the input z € (RZ- to the value H&,’C’C (z) = Yo € R™ determined by

X[:U(AX1_1+CZ;+C), tGZ_,

@)
Y[ = WX[, t e Z_.

Here A, C, ¢ are randomly drawn (from a distribution that does not use any knowledge about
H*), o is a given activation function as above and W is optimized at the time of training in
order to approximate H* as well as possible. This technique has been successful in a wide
range of applications (see, e.g., [19, 24, 30, 31]). Based on these empirical results, ESNs with
randomly generated A, C, ¢ are thought to be capable of approximating arbitrary dynamical
and input/output systems. However, a rigorous mathematical result proving this statement
does not exist yet in the literature. It is only in the context of invertible and differentiable
dynamical systems on a compact manifold that a result of this type has been recently estab-
lished. Indeed, the results in [16] show that randomly drawn ESNs like (2) can be trained by
optimizing W using generic one-dimensional observations of a given invertible and differen-
tiable dynamical system to produce dynamics that are topologically conjugate to that given
system.

In this article we place ourselves in the more general setup of input/output systems and
provide a first mathematical result that proves the approximation capabilities of ESNs in
a discrete-time setting and quantifies them by providing approximation bounds in terms of
their architecture parameters. In more detail, we propose a constructive sampling procedure
for A, C, ¢ (depending only on three hyperparameters) so that by training W, the associated
system (2) can be used to approximate any H* satisfying mild regularity assumptions. The
L?-error between H* and its echo state approximation H‘;AV’C’C can be bounded explicitly and
the approximation result can also be extended to a universality result for general H* (not
satisfying the regularity conditions). For full details we refer to Theorem 2 and Corollary 5
below.

We complement these results by analyzing a popular modification of (2), in which the
hidden state X is updated according to X; = 0 (AWX,_| + Cz; + ¢). These systems are
called echo state networks with output feedback (or Jordan recurrent neural networks with
random internal weights) and are also widely used in the literature even though, in this case,
a more sophisticated training algorithm is needed (for instance a stochastic gradient-type
optimization algorithm combined with backpropagation in time). By applying similar tools
as in the case of (2) we provide an approximation result for such systems in situations when
the unknown functional is itself given by a sufficiently regular reservoir system of type (1).
In this case, only one hyperparameter N appears (proportional to the number of neurons,
that is, the dimension of X) and the approximation error is of order O (1/+/N). We refer to
Theorem 3 below for full details.

To prove these results we rely mainly on probabilistic arguments involving concentration
inequalities, an importance sampling procedure and techniques from empirical process the-
ory (in particular the Ledoux—Talagrand inequality [23]). A further crucial ingredient is an
integral representation for sufficiently regular functions related to the integral representations
appearing in the proofs in [3, 22, 25]. In continuous time, an alternative approach based on
randomized signature is presented in [6] and [5].

We emphasize that the proof of these dynamic statements crucially relies on our novel re-
sults for the static case. To understand these better, we briefly elaborate on the literature (we
refer to the introduction of [35] for a detailed overview). The seminal work by Barron [3]
shows that any function H*: R? — R of a certain regularity can be approximated up to an
error of order O(1/+/N) using a neural network with one hidden layer and N hidden nodes.
The hidden weights can be generated randomly, but the distribution from which they need
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to be drawn depends on H*. Thus, the randomly drawn weights are only used to guarantee
the existence of tunable weights. Subsequently, the important contributions by Rahimi and
Recht [33-35] analyze random weights generated from a known probability distribution p.
In their argument the optimal output layer weights (which are tuned) implement an impor-
tance sampling procedure. The function class §§, for which error bounds can be derived (see
Theorems 3.1 and 3.2 in [35]) and for which an approximation error of order O (1/ VN) is
guaranteed is defined in terms of p and it is shown that §, is dense. However, for a given
function H* it may be challenging to decide whether H* € §, (and hence the error bound
applies) or not. In this paper we show that under mild regularity assumptions on H* one
automatically has H* € §, for a wide class of distributions p including the most commonly
used case when p is a uniform distribution. This is formulated abstractly in Theorem 1 and
then specialized to the uniform distribution in Proposition 3 and Corollary 1. We also make
the dependence of the resulting bounds on the input dimension explicit. This can be used
to decide whether approximations by (shallow) random neural networks for classes of func-
tions (parametrized by the input dimension) suffer from the curse of dimensionality or not.
We emphasize that although all these results use shallow neural networks which are, from an
approximation theory perspective, less flexible than deep neural networks (see, for instance,
[25, 32]), here the hidden weights are generated randomly and so the neural network training
does not require gradient descent-type optimization techniques.

Finally, let us point out that Theorem 2 entails a constructive sampling scheme for the
weights that may be readily used by practitioners and provides a learning procedure in which
only W and three hyperparameters need to be optimized.

The remainder of this paper is organized as follows. In Section 2 we introduce some key
concepts on reservoir systems. Section 3 then proves an integral representation for sufficiently
regular functions, which is at the core of the subsequent approximation results. In Section 4
we then treat the static case and prove the random neural network approximation results
Theorem 1, Proposition 3 and Corollary 1. Section 5 is concerned with the dynamic case and
contains the echo state network approximation results Theorem 2 and Corollary 5. Finally, in
Section 6 we prove the approximation result for echo state networks with output feedback,
Theorem 3.

Notation. We use the notation Z_ = {0, —1,-2,...}, N={0,1,2,...}, Nt =N\ {0}.
Throughout the article d, m, N, g € N™ denote positive integers and M is a positive constant.
For any R > 0 we denote by Bg the Euclidean ball of radius R around O in the appropriate
dimension (which will always be either mentioned explicitly or obvious from the context).
Furthermore, A, (Bg) denotes the volume of the ball Bg C R?. Unless mentioned otherwise,
| - || denotes the Euclidean norm. We denote by M, , the set of real m x n matrices. We fix
a probability space (€2, F, P) on which all random elements are defined.

2. Preliminaries on the dynamic setting. The goal of this section is to present some
preliminaries on the dynamic case, that is, when X C (R%)%-. In this case, it is customary
to refer to maps H*: X — R as functionals. While this article is mainly concerned with
approximating functionals, let us point out that these are in one-to-one correspondence with
so-called causal and time-invariant filters; see, for instance [11, 13, 14]. An important class
of functionals is given by those satisfying H* = arginfycy R(H) for some class H of func-
tionals and a risk map R: H — [0, co) that satisfies certain customary properties (see [10]
and references therein for details). Another important class is given by reservoir functionals
that we recall in the next paragraphs.
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2.1. Reservoir systems and associated functionals. Letd, N € N *,D; C R4, Dy C RN
and F: Dy x Dg —> Dy, and forz € (Dd)Z* consider the system

(3) X, =F(X_1.%), te€Z_.

We say that (3) satisfies the echo state property, if for any z € (Dg)%~ there exists a unique
X € (DN)Z* such that (3) holds. As the following Proposition shows, a sufficient condition
guaranteeing this property is that Dy is a closed ball and F is contractive in the first argument.

PROPOSITION 1 (Proposition 1 in [10]). Ler R > 0, write Br={ueR": |u| <R}and
suppose that F: Bgr X Dg — BR is continuous. Assume that F is a contraction in the first
argument, that is, there exists 0 <r < 1 such that for alln,v € Bg, w € Dy it holds that

|Fa,w) — F(v,w)|| <rllu—v].

Then the system (3) has the echo state property. Furthermore, we can associate to it a unique
mapping Hr: (Dg)%~ — RN that is continuous (where (Dg)%~ is equipped with the product
topology) and satisfies Hp (z.+1) = X;, for all t € Z_ (the symbol 7., stands for the shifted
semi-infinite sequence (..., Z_34¢,Z_14¢,2:) € (Dd)Z*).

The functional Hr in Proposition 1 will be referred to as the reservoir functional associ-
ated to F. In many situations one is also interested in considering the input/output system
generated by (3) together with a readout or observation map, that is,

(4) yt:h(xt)7 tezf’

for some h: Dy — R™. The reservoir functional associated to (3)—(4) is given as h o H.

In the dynamic case the functionals H that we use in this article to approximate a given
(unknown) functional H* are always of the form H = h o H for h linear and F suitably
constructed.

3. Integral representations of sufficiently regular functions. A key ingredient in the
proofs of the approximation results in this paper are certain integral representations of suffi-
ciently regular functions. We provide a first result in Proposition 2 below. Variations of this
result under weaker conditions will be developed later on in the article. In probabilistic terms,
Proposition 2 shows that for all R > 0, any sufficiently regular function f can be represented
on By as the difference of two functions of type v — cE[max(v-U+ ¢, 0)] for some constant
¢ > 0, some random variables U and ¢ admitting a Lebesgue density with certain integrability
properties and satisfying ||U|| < R and |¢| < max(MR, 1), P-a.s.

The integral representation below is related to the Radon-wavelet integral representation
as used in [25] and representations appearing in [3, 22] and [2], Theorem 2.

This integral representation will be crucial to obtain random neural network approxima-
tion results with weights sampled from a uniform distribution; see Proposition 3 below. We
will also formulate similar results for more general sampling distributions and under weaker
integrability conditions (see Theorem 1 and Corollary 1 below).

PROPOSITION 2. Leto: R — R be given as o (x) = max(x, 0). Suppose that f: R? —
R satisfies for all v e RY with ||v|| < M that

fo= [ e g dw
R4
for some g: R?1 — C satisfying
(5) v = / max (1, [|w][2970)| g(w)|* dw < co.
R4

Then, for any R > O there exists a measurable function 7w : R4t — R such that:



32 L. GONON, L. GRIGORYEVA AND J.-P. ORTEGA

(1) (@) =0 forall o= (w,u) € RY x R satisfying |w| > R or |u| > max(MR, 1),
(i1)
/ max(1, |@])|7(@)|do < oo,
Rg+1

(iii) for all ve RY? with ||v|| < M,

(6) ro= [ r@o(w.1)-0)do,
(iv)
/R N l@|?7 (@) do < 8(M> + M + 16) (/B max (1, [|w]*)|g(w)|* dw
max(1, [|w]*71)
[I;‘I\BR R2q+2 |g(W)|2dW)

and thus in particular if R > 1 then

/ ll?7 (@) do < 8(M> + M + 16)v*.
Rq+1

REMARK 1. A sufficient condition for (5) to be satisfied is that f € L'(R%) has an
integrable Fourier transform and belongs to the Sobolev space W4+32(IR9); see, for instance,
[7], Theorem 6.1, or Corollary 2 below.

REMARK 2. We now emphasize two points concerning the condition (5). First, this con-
dition (5) is stronger than the condition

/HMMWWN<w
R4

appearing in the well-known work by Barron [3] (see, e.g., (7) below for an argument).
However, this stronger condition (5) also allows us to obtain a stronger conclusion. More
specifically, whereas [3] proves that there exist neural network weights ensuring a certain
approximation accuracy, we will see how Proposition 3 below provides under condition (5) a
constructive procedure for the neural network weights.

Second, we now discuss why the condition (5) is necessary. The properties of & derived
in Proposition 2 are required to guarantee that the neural network weights can be sampled
from a uniform distribution in Proposition 3 below. This is ensured, on the one hand, by the
compact support of  (see Proposition 2(i)), which is achieved by a change of variables in the
proof of Proposition 2. On the other hand, to carry out the importance sampling procedure
in the proof of Proposition 3, the square integrability condition on 7 (see Proposition 2(i)) is
needed. To obtain square integrability of ||w||7 (w) we need condition (5) (see (11), (13) in the
proof below) since the Jacobian determinant appearing in the change of variables mentioned
above makes the term ||w]||2¢2 appear.

PROOF. The proof consists of two steps. In a first step, we use a modification of the argu-
ment in [22] to obtain a representation of type (6), but with corresponding 7 not necessarily
satisfying (i). Then a suitable change of variables allows to obtain a representation with the
desired properties (i)—(iv).

Beforehand, let us verify that (5) implies that
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Indeed, by first splitting the integral into an integral over By C R? and RY \ B; and then
applying Holder’s inequality one obtains

3 2 12 1/2
[ i) eonlaw =2( [ lemPaw) g a)

#2 [ wiPlgon]aw,
R4\ By

where the last term can be estimated by applying Holder’s inequality once more to obtain

3 61 ) 1/2 ) 1/2
[ IwlFlgn]w < (/ W12 g (w)| dw) (/ Wil ”fdw)
R%\ B R4\ By R%\ B,

and the integrals are finite thanks to the hypothesis (5).
Step I: First, note that for any z € R one may write

(8) —/ G—uw)te" +(—z—u)Tedu=e*—iz—1,
0
since for z > 0 one has
z ‘ 1 1 rz . .
f(z—u)e’”du:—fz+7/ edu=iz—e*+1
0 i iJo

and for z < 0 one calculates

-2 . 1 1 =2 _. .
/ (—z—u)e_’”duz—fz—ff e Mdu=iz—e'*+1.
0 1 1 Jo

Second, for any v € R? one obtains by Tonelli’s theorem and (7) that

f |(v-w—u)Te™ + (—v-w—u)Te "||g(w)|dw du
R4 x[0,00)

[v-w]
S/Rq/ (Iv-w|—u)|g(w)|dudw

”V” / wiI2|g(w)| dw < oo.

Hence one may combine Fubini’s theorem, (7) and (8) to obtain for any v € RY

_/R o )[(v-w—u)+ei”+(—V-w—u)+e_i“]g(w)dwdu
4 x[0,00

= - (eiv'w —iv-w—1)g(w)ydw= f(v) = (V)(O0)-v— f(0).

Based on this integral representation of f we will now define o appropriately to obtain

fv) = /]Rq+1 o ((v, 1) - (w,u))o(w, u) dwdu

for all v € R? with ||v|| < M. To do this, first note that for all v € R? with ||v|]] < M and all
(w,u) € RIH with u < —M||w| we have v - w 4+ u < 0 and therefore o ((v, 1) - (w, u)) =0.
Setting

a1(w,u) = —[Re(e ™ g(w)) + Re(e" g(—w)) |1 pywy,01 (1)

and changing variables we thus obtain

©) fO = @HO V= FO = [ (1) (ww)ear(w,w) dw
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In addition f(0), (V f)(0) € R and therefore one has that [p, Im[g(W)]dw =0 and [, (V -
w)Re[g(w)]dw = 0. This yields

(VO -v+ f(0)
= /R‘I v-w(—Im[g(w)]) + Re[g(w)] dw

(10) 1
= %}%q /0 (v-w+u)(2Re[g(W)] — Im[g(W)]) du dw

1
= /Rq fo [(v-w+u)t — (—v-w—u)T](2Re[g(W)] — Im[g(W)]) du dw.
Defining g(w) = 2Re[g(w)] — Im[g(w)] and

ar (W, u) =1po,11(u)g(W) — Lj—1,01(w)g(—wW)
we may rewrite (10) as
(VHO) -v+ f(0)= /Rq+1 o ((v, 1)+ (w,u))or(w, u) dwdu.

Combining this with (9) and setting « = o] + 2 thus yields

fv)= AA@HI o ((v, 1) - (w,u))o(w, u) dwdu.

Step 2: For @ = (w, u) € R? x R define

24+2  / R2
(W, 1) = 1 pg\(0) (W) [“(“’) + ||w||2(q+2)a<llwllz>]

Then clearly w(w,u) =0 if ||w| > R. If |u| > max(MR, 1) and ||w|| < R then it follows
that |u| > M|w|| and |u|R?/||w||*> > 1 and hence a1(W, u) = ar(W, u) = a1 (R>w/||w||?,
R%u/||w|?) = aa(R*w/||w||%>, R%u/||w||?) = 0. This shows (i). Next, define the mapping

_ R?
01 Br\(0) > RABr,  pw =1
and note that ¢ is a diffeomorphism satisfying
|d t( /( ))| qud t(]l 1 2WW“>‘ R24
et(o' (w))| = e — = .
CEwIz w2

The change of variables formula hence implies for any measurable function #: R? — R that

qudw
/Rq\g,eh(w)dw / (P O) 5



APPROXIMATION BOUNDS FOR RESERVOIR COMPUTING 35

Applying this and the substitution R%i = u||w]||> one obtains that

/Rﬁl max(1, |@])|7(w)|do

/ / R%max(1, ||(w, )| O[(Rz(w, ﬁ))’RM“) dii dw
B

N Iwliz /1 lw]2@+D

2
+/BRX]R(1+ lol?)|a(@)| do

_/Rq\BR/ <|| wl?

max(1,M|w]|))
< 12max(1, R A;q/o (14 IWII* + u?)|g(W)| du dw

(w,u)||)|a(w, u)|dudw+/BRxR(1+ l@]?)]e(@)| de

< 12(M> + M + 1) max(1, R™?) /Rq (1+ [Iw]*)|g(w)| du dw < oo.

This shows (ii). To deduce the representation (iii) one may now use Step 1 and apply the
same substitution as above to the first term to obtain for any v € R? with ||v|| < M that

fv) = / / (v, 1) - (w,u))a(w, u) du dw+/ o ((v, 1)+ (w,u))oe(w, u)dwdu

u R%ii \ R?@+D dj dw
-1, foo (o0 (om. ||w||2>)°‘<“’(W)’ ||w||2> [wiEa+D

+ o((v, 1) w)a(w)do

BrxR

= o((v, 1) @) (w)dw.
BR xR

It remains to prove (iv). Applying again the change of variables formula and using ||¢(W)| =
R?||w|~! yields

/ ol (@)? do
RI+

< 2/ o] 20 (@)? do

R24+2
11 +2/ /
(b Bg JR [|W]|%4+2

=2/ @] ?e(w)? do

R2(i1
[[w]|?

2 /R%(ii, w)\ 2 R?WtD di dw
[[wi|2@+D

w1

+ 2R+ f [ WP 4 w4 e, W) du dw.
RY\Bg

To estimate the first term, we note that |o(@)|? < 2|a; (@)|? + 2|oa (@) |? and thus

f lola()? do
BR xR
(12) <4 /B R /R (2 + IWIP)[|g W) L0, 0w @) + |20 10,11 ()] due dw

S4(M3+M)/B ||w||3;g(w)|2dw+32f3 (14 [[w]?)|g(w)|* dw.
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Furthermore, one estimates the integral in the second term in (11) as

1
1 /Rq\B /H;[uzllwllh+2 + w124 o, w)? du dw
R

2 2g+2 2q+4
5/ /[u IwI20+2 1 w244
R\ Bg JR

(13) X [!g(W)lzll[o,anH](u) + |§(W)|2]l[o,1](u)]du dw

< (M® + M) / w24+ g (w) |2 dw
R7\ Bg

+8 / (IWI27+2 + W] 294) | g (w) > dw.
R4\ Bg
Combining (11), (12) and (13) one obtains

/RW lo|*7 (©)* dw < 8(M> + M + 16) (/B max(1, w[*)|g(w)|* dw

R

max(1, |w]|?F3) ) )
dw ),
R

as claimed. [

4. Approximation error estimates for random neural networks. In this section we
derive random neural network approximation bounds for sufficiently regular functions. We
first introduce the setting and prove a result for separable Hilbert spaces X and general sam-
pling distributions (Theorem 1 below). In Section 4.2 we then consider the special case
X = RY and derive results for weights sampled from a uniform distribution (see Proposi-
tion 3 and Corollary 1). The dependence of the approximation bounds on the input dimension
is explicit and thus these results may be used to decide when the approximation by random
neural networks for classes of functions (parametrized by the input dimension) suffer from
the curse of dimensionality. Finally, in Section 4.3 we deduce as a corollary of the results in
Section 4.2 that neural networks with randomly generated inner weights and in which only
the last layer is trained possess universal approximation capabilities. This is a new version of
the L?-universal approximation theorem for neural networks from [17].

4.1. Setting and result for separable Hilbert spaces. Suppose X is a separable Hilbert
space with inner product (-, -) and associated norm || - ||. Let (A1, ¢1), ..., (AN, {n) beiid.
X x R-valued random variables with distribution 7, a probability measure on B(X x R) =
B(X) ® B(R) (see [20], Lemma 1.2). Denote by A: X — R the random linear map with
Az = ((A1,z),...,{(AN,2)) and set { = ({1, ..., ¢n). Then for any M, y-valued random

matrix W we may define a random function H‘?V"; : X - R™ by

(14) Hyt (@) =Wo(Az+1?), zeX.

Such a function will be called a random neural network with N hidden nodes and inputs in
X. Clearly, if X =R, then this is a classical single-hidden-layer feedforward neural network
with inputs in R?. When o : RNV — R is obtained as the componentwise application of the
rectifier function o : R — R given by o (x) := max(x, 0) we say that (14) is a ReLU neural
network.

We will be interested in using random neural networks to approximate a (unknown) func-
tion H*: X — R™. In applications, the procedure is typically as follows: in a first step
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the network parameters A, ¢ are generated randomly. Then these are considered as fixed
and the matrix W is trained (given the realizations of A, ¢) in order to approximate H* as
well as possible. With this in mind, in what follows we will be mainly interested in mea-
suring the approximation error between H‘[,&V’; and H* conditional on A, ¢ and with re-
spect to the L3(X, wuz)-norm for a probability measure gz on (X, B(X)). Thus, through-
out this section, Z is an arbitrary X-valued random variable. We denote by uz its distribu-
tion. The only assumptions we impose is that |Z|] < M, P-a.s. and that Z is independent
of (A1,¢1),..., (AN, ¢n). The following lemma guarantees in particular that H“?V’C(Z) is a
random variable, that is, F-measurable.

LEMMA 1. H‘;AV’; is product-measurable, that is, the mapping (w,z) > Q@ X X +—
Hyo)* ) (2) e R" is F ® B(X)-measurable.

PROOF. On the one hand, the Cauchy—Schwarz inequality implies that for any z € X" the
mapping X > v+ (v, z) is continuous and thus 5(X)-measurable. This shows that (A;, z) is
arandom variable for all i =1, ..., N. Therefore, for any z € X’ the mapping

Q350> Hyor!“ (2) = W(@)o (A(@)z + ¢ (@) € R”
is F-measurable.

On the other hand, for any w €  the linear map A(w): X — R" is continuous (again

by the Cauchy—Schwarz inequality) and thus also H‘;“;,(Z) 4@, ¥ _ R™ is continuous. The
claimed product-measurability therefore follows for instance from Aliprantis and Border [1],
Lemma4.51. O

We now present our random neural network approximation result; see also Remark 3 below
for a discussion. We use the following notation: for any measure v we write v~ for the
measure v~ (-) = v(—-) and for a complex measure v we denote by |v]| its total variation
measure; see [36], Chapter 6.

THEOREM 1. Suppose that H*: X — R™ can be represented as

Hj’.k (z) = /X ei<w’z>ﬂj (dw)

for some complex measures fLj, j=1,...,m, on (X,B(X)) and all z € X with ||z|| < M.
Assume that
(15) [ max(1IwIP) 11 @w) < oo,

1
X 7R (u)

7 =mx ® (r(x)dx), ||+ |/1;17 <K 7 and with Fr(x) =2 [°
holds:

du either (i) or (ii)

(i) mR is strictly positive and |F (x)| < oo forall x e R
(1) for some R >0, rxy({fwe X : ||w| > R}) =0 and mr(x) > 0, | Fz(x)| < oo for |x| <
max(MR, 1).

d(fjl+1m;17)

R and assume that

Furthermore set gj =

/ Fr (M|W])W]I*g; (W) 72 (dW) < 00,
(16) &
/X max(||w|?, 1)g; (w)>mx (dw) < 0o
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and let 0 : R — R be the rectifier function given by o (x) := max(x, 0). Then there exists W
(a M, n-valued random variable) and C* > O such that the random ReLU-neural network

Hxt satisfies

*

C
B[ Hy* @)~ H*@)|*] <

and for any § € (0, 1), with probability 1 — § the random neural network H&,’g satisfies

. 1/2 \/ﬁ
(fXHHQ‘(z)—H (Z)quz(dz)) <~

Moreover, the constant C* is explicit and given by C* = Z;”zl C;-‘ with

C; =12 [ F(MIwI) [wlg, (WP (dw
X
+32M?(Fr (1) — Fn(—l))/Xmax(HWHz, 1)g;(w)mx(dw).

REMARK 3. At first glance Theorem 1 may appear to be merely an existence statement.
However, an optimal W can in fact be computed explicitly by solving the least-squares min-
imization problem

(17) r%nE[UWa(AZH)—H*(Z)H2|A,;],

where the minimization is taken with respect to M, y-valued random variables which are
measurable with respect to the sigma-algebra generated by A, . We will show in (22) and
(23) below that the matrix W constructed in the proof of Theorem 1 is measurable with
respect to the sigma-algebra generated by A, {. Consequently, Theorem 1 shows that

*

. AL * 2 C
B[ min{B[|Hy* 2) — #* @14, ¢]}] = -

REMARK 4. A first attempt at proving Theorem 1 might be to directly work with the
solution to the least-squares minimization problem (17), that is, the explicit minimizer W*.
However, evaluating the approximation error

E[|[W*o(AZ +¢) — H*@)|*]

directly is very challenging due to the dependence between W* and o (AZ + ¢). This is
further complicated by the fact that the explicit expression of W* involves the inverse of the
covariance matrix of 0 (AZ + ¢) conditional on A, ¢. Therefore, evaluating the expectation
with respect to A, ¢ or providing an upper bound for it is for the time being out of reach.
This is the reason why we do not work with (17) in the proof of Theorem 1, but we rather
explicitly construct a W for which the approximation error can be bounded more easily. As
pointed out in Remark 3, we thereby obtain also an upper bound for the optimal W. Whether
or not one can also obtain a lower bound

. AL 2 c
E[min{B{| 1y 2 — 1 @) 1AL ¢} 2
for some C > 0 is still not clear due to the difficulties mentioned above.

REMARK 5. In Theorem 1 the approximation error is measured with respect to the
L?(X, juz)-norm. Analogous approximation results can also be obtained with respect to other
norms, including the supremum norm on compact subsets of X’; see [9], Theorem 1, for the
case where X is finite-dimensional and (i) in Theorem 1 holds.



APPROXIMATION BOUNDS FOR RESERVOIR COMPUTING 39

PROOF. First note that, writing W for the jth row of W, one has

m
Al 2 Al 2
E[|Hy* @) — H*@)*] = 3. E[|Hy* @) — H @),
j=1

Thus, it is sufficient to prove the claimed result for each component j individually and sum
up the resulting constants. Without loss of generality, we may therefore assume m = 1. To
simplify notation we will write H* = H{", i = ji1, g = g1 and C* = C}.

The proof now proceeds in two steps. In a first step we derive an 1ntegral representation for

H* similar to Proposition 2. In the second step we then choose W in such a way that Hé\v’g is
a sample average of N i.i.d. random functions with expectation H* and deduce the claimed
error bound based on this.

Step 1: Integral representation. First, recall that by [36], Theorem 6.12, there exists a mea-
surable function #: X — C satisfying |h(w)| = 1 for all w € X and 1(dw) = h(w)||(dw).
Next note that proceeding precisely as in the proof of Step 1 in Proposition 2 and using (15)
yields for any v € X that

—/ [((v, W) —u)Te™ + (= (v, W) —u)Te "] i(dw) du
(18) X x[0,00)

:/ (ei<v’w>—i(v,w)—]),&(dw):H*(v)—f i(v, w)(dw) — H*(0).
X X

We claim that the last integral is a real number. To see this, one uses Im(H*(Av)) = 0 and
Im(H*(0)) = 0 to estimate for any A > 0

1
‘Im<Ai<v, w)ﬂ(dw))‘ - X‘Im(H*(kV) — H*(0) —/Xu,\v, w),&(dw))‘
= %V (0 =1 =i, w>)h(w)|ﬂ|<dw)‘

< Mf (v, w2121 (dw)

2
<xﬁ/ w22l dw)

and note that the last expression converges to 0 as . — 0 due to (15). This shows that
/ (v, w)i(dw) + H*(0)
x

_ /X ((v. w)(—Im[2(w)]) + Re[A(W)])] 2] (dw)

1
(19) = /X /O ((v, W) + u) (2Re[h ()] — Im[A(W)]) du| | (dw)

N /X /01[(<v, w) +u) " — (=(v, w) —u) "]
x (2Re[h(w)] — Im[A(W)]) du|/|(dw),

which is the analogue to (10) in the proof of Proposition 2.

We now combine the representations (18) and (19) to arrive at the claimed integral rep-
resentation. To this end define the function 4: X — R by h(w) = 2Re[h(W)] — Im[h(W)]
for w € X and define the measures fi1(dw, du) = Re[e " "“h(W)]|/1|(dw) du, fir(dw, du) =
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Re[e“h(—w)]|t|~(dw)du on X x R. With these notation we may define the measures o
and op on X x R by

a1 (dw, du) = =1 prywy,01(w) [ 1 (dw, du) + fi2(dw, du)],

a2 (dw, du) = Lo, 1)) (W) 2] (Aw) due — L1 01 (0)R(—w)| 2] (dW) dut.

As shown above, the right-hand side in (18) is real and hence so is the left-hand side. Thus, by
setting @ = a1 + a2, rearranging (18) and using (19) one obtains for any v € X’ with ||v|| < M
that

(20) H*(v) = /X Ro((v, W) + u)a(dw, du).

Finally, let A € B(X x R) satisfy m(A) =0 and for u € R denote A, ={we X :(W,u) €

A for some u € R}. If (i) holds, then the assumptions that 7 = 7y ® (7r(x)dx) and 7r > 0

imply that 7y (A,) = 0 for Lebesgue-a.e. u € R. Consequently, |/t|(A,) + 4]~ (A,) =0 and

a(A) = 0. In case (i1) one may proceed similarly to obtain in either case that « < 7. Writing

_ d(al+ A1)
d]TX

one uses |7 (w)| < 24/2 to estimate for any (w,u) € X x R that

g(w) (W), wedX

1
< (w01 () + 23211, 1y (1) ——g(W).

21 ‘d_o{ )
@h dr (W, u R (1)

Step 2: Importance sampling.
Next, write U; = (A, ¢;), define the random variables

d
(22) Vi = —(U;)
dmr
and set
23) W= (v V)
= N 1 N)-

By first inserting the definitions and then using independence, conditioning (see, for instance,
[20], Lemma 2.11) and the assumption that X is separable we obtain

2

} Z:Z} .

A,
E[| Hy® (Z) — H*(Z)|*] = E[|Wo (AZ + ¢) — H*(Z)|*]
However, by construction each of the summands V;o ({(A;, z) + ¢;) in (24) is arandom variable
with expectation H*(z), as one sees by using the representation (20) to calculate for each
i=1,...,Nandany z € X with ||z|]| <M

(24) P
- E[EHN > Vio((Ai.2) +4i) — H* (@)

i=l

d
E[Vio ((Ai,z) + &)] = /XXR %(W, u)o ((w,z) + u)(dw, du)

= H*(z).
Using independence one thus obtains

g2

1 N
— Y Vio((Ai,z) + &) — H*(z)
i=1

2 1 N
j| = Var(ﬁ Z ‘/i0(<Ai’ z) + {t))

i=1

(25) = %Var(VﬂI((Al, z) + 1))

1
< NIE[VIZG((AL 7) + )%
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To estimate the last expectation, one notes that (21) and (16) yield for any z € X with ||z|| <
M

E[VZo((A1.2) + )]

2
- XxR(j—z(w ”)> o ((w, Z)+M)27T(dw, du)

= 2fXxR(]l(_M||W||’O](u) + 81[—1,1](“))< (( ))) o ((w. ) + u) 7 (dw, du)
2
(26) < 2/){/[R[1(—M\|w||,0](u)|<W, 2) > + 1611 1) (|(w. 2)[* + 1)]75;;())71)(((1% du

<M /X Fr (M|IWI]) [[W]>g(W)?7 2 (dw)

+32M?(Fr (1) — Fn(—l))/xmax(nwnz, 1)g(wW)?m 2 (dw)

=C* < o0.

Combining (24), (25) and (26) thus yields

1/2 JCF
E[(/ Hy%(2) — H* @) dz) } Hyt (@) — H*2)|1]'* < Y=
iy @) = B @) pzdo) E[| Hy* (Z) — H*(@)|’] =N
Thus, for any given § € (0, 1) one may set n = ‘/; and apply Markov’s inequality to obtain
12 1/C*
Al
Hy'” (z H*(z dz) > )5— =34.
P(([ 1 @~ 1 @ Patan)) ) = 2 -

4.2. Results in the finite-dimensional case. Let us now specialize to the case X = RY.
We work in the setting and notation as introduced in Section 4.1 and, in particular, consider
random neural networks

Q27) Ho' (@) =Wo(Az+1¢), zeRY,

Thus, Theorem 1 provides a random neural network approximation result for a wide range
of sampling distributions 7 for the weights. However, these assumptions may not allow us
to sample the weights from a uniform distribution, unless the Fourier representation of H* is
compactly supported. In this section we prove that this case can still be covered by applying
the representation from Proposition 2. To simplify the statements we choose m = 1 here, but
all the results can be directly generalized to m € NT. In line with Remark 3 the “existence”
statement in the next proposition also directly yields approximation error bounds for the
random neural network with readout W trained by least-squares minimization.

PROPOSITION 3. Suppose H*: RY — R can be represented as
H*(z) = / ¢ o (w) dw
RY
for some complex-valued function g on R? and all z € R? with ||z|| < M. Assume that
(28) / max (1, [w][%%)|g(w)|* dw < oo.
R4

Let R > 0, suppose the rows of the My n-valued random matrix A are i.i.d. random variables
with uniform distribution on Bg C R4, suppose the entries of the RY -valued random vector ¢
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are i.i.d. random variables uniformly distributed on [— max(M R, 1), max(M R, 1)], assume
that A and & are independent and let o : R — R be given as o (x) = max(x, 0). Then, there
exists W (a M| y-valued random variable) and C* > 0 such that

*

(29) E[| Hy* (Z) — H*(Z)|*] < %

and for any § € (0, 1), with probability 1 — § the random neural network H&,’; satisfies

2 _Jex
AL _og* 2
(L1 @ - @) <.

Moreover, the constant C* is explicit (see (33) below).

PROOF. First, the function H* satisfies the hypotheses of Proposition 2. Thus, there ex-
ists an integrable function 7*: R?T! — R such that for z € R? with ||z|| < M the function
H* can be represented as

H*(z) = /IR‘JH o(z-w+u)m*(w,u)dwdu

and 7*(w, u) = 0 for all (w, u) € R? x R satisfying ||w|| > R or |u| > max(MR, 1). More-
over,

/ ||w||2n*(w)2dw§8(M3—|—M+16)(/ max (1, [|w]*)|g(w)|* dw
o o

max(1, |w]>473) ) )
dw ).
+A;q\BR R2q+2 |g(W)| w

Recall that by assumption 7 = mx ® g, where 7y is the uniform distribution on Bg and g
is the uniform distribution on [—max(M R, 1), max(M R, 1)]. Hence, setting « = 7*(®) do
one has that (20) holds, o« <« 7 and g—g = 2max(MR, 1)Vol, (Bg)m*. Thus, one may now
mimic Step 2 in the proof of Theorem 1, that is, (22)—(25), to obtain

1
E[VZo((A1.2) + 1))

(31) E[| Hy* (Z) — H*(Z)|*] < v

Furthermore, for any z € X’ with ||z|| < M

E[VZo ((A1.2) +1)°]

do 2 2

= (—(w,u)> o((w,z) +u) 7 (dw, du)
Ra xR\ d7r

(32)

* 2 2
= 9 R b 9
2max(MR, 1)Vol, (Bg) /ﬂ‘g T ww) o (W, 2) +u)” dw du

<2max(MR, 1)Vol, (Bg)(M + 1)2/ | olP7"(@)* do.
Rg

Combining (30), (31) and (32) thus yields (29), as desired, with

C* =16max(MR, 1)Voly (Br)(M + 1)*(M* + M + 16)

(33)

max(1, ||w][*7*) 2
FerEs) lg(w)| dW).

The high-probability statement then follows from (29) precisely as in the proof of Theorem 1.
O

X (/BR max(1, ||w||3)|g(w)|2dw—|—

RYI\Bpr
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In the next result we present an alternative error estimate, for which the integrability con-
dition on g does not depend on the input dimension g (compare (28) to (35)). The estimate
can be deduced from the error estimate in Proposition 3 by truncating g and estimating the
difference between the truncation and the original H*. Recall that Z is a RY-valued random
variable satisfying ||Z]] < M, P-a.s. We emphasize that the “existence” statement in the fol-
lowing corollary also yields approximation error bounds for the random neural network with
readout W trained by least-squares minimization; see Remark 3.

COROLLARY 1. Suppose H*: R? — R can be represented as
(34) H*(z) = /R ) ¢ o (w) dw

for some complex-valued function g € LY(RY) and all z € R? with ||z|| < M. Assume that

172
(35) Cr= (/];M max(1, ||W||3)|g(w)|2dw> < o0.

Let R > 0, suppose the rows of the My n-valued random matrix A are i.i.d. random variables
with uniform distribution on Bg C R4, suppose the entries of the RN -valued random vector ¢
are i.i.d. random variables uniformly distributed on [—max(M R, 1), max(M R, 1)], assume
that A and ¢ are independent and let o : R — R be given as o (x) = max(x, 0). Then there
exists W (a My, y-valued random variable) such that

C*
(36) E[| Hy' (Z) — H*(2)|*]"* < % +/R |g(w)| dw,

9\Br
where

C% = 16max(MR, 1)Vol, (Br)(M + 1)*(M?* + M + 16)

(37) 3 ’
X -/BR max (1, [w]]”)[g(w)|” dw.

In particular, writing cy; , = 16 max(M, 1)Voly (B1)(M + 1)*(M? + M + 16), it follows
that:

1
() if [t = Jgq IWI¥|g(W)|dw < 00 for some k € N*, then R = N 7471 yields

A, 271/2 1 *
(38) E[| Hy* 2) - H*@)|*]"* < m[ﬂw,ch + Ii],
N I3
(i) if Ik = Jpq exp(C||W||k)|g(W)|dw < oo for some k € Nt and C > 0, then R =
(Lg(g/ﬁ))l/k yields

log(+/N)]@tD/2k) 41
12 Logl j]ﬁ (€™ en o€ + L.

REMARK 6. A sufficient condition for (34)—(35) to be satisfied is that H* € L' (R?) has
an integrable Fourier transform and belongs to the Sobolev space W22 (RR9); see, for instance,
[7], Theorem 6.1. The integrability conditions formulated in parts (i) and (ii) are related to
additional smoothness properties of H*, where a higher degree of smoothness means that
the Fourier transform of H* decays more quickly and consequently, the expressions I in (i)
or (ii) are finite for larger k € N*. This results in a faster rate of convergence in the bounds
(38) and (39). For instance, if the condition in part (i) is satisfied, then the error in (38) is

39)  E[|Hyt @ - H*@)|]
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of order O(N~"2+ 4217y which is close to O(1 /~/N) when (g + 1)/k is small. Thus, as
in classical works (see, for instance, [29]) the approximation rate depends on the ratio of the
input dimension and the smoothness of the function to be approximated. A similar result for
functions in W*2(RY) for k > % + 1 is formulated in Corollary 2 below.

PROOF. Define g(w) =1p,(w)g(w) and

A*(z) = / ¢ ™2 3 (w) dw.
R4
Then

/ max(1, ||w||2‘7+6)|g(w)|2dw < max(1, R2q+3)/ max(1, ||w||3)|g(w)|2dw <00
R4 RY

and so Proposition 3 (applied to H*) shows that there exists W such that

*

- c
(40) B[y’ @ - A @] =

with C% given in (37). Furthermore, the triangle inequality yields

2}1/2

Blla@ - @) k[ [P dw

< / g (w)| dw.
RYI\Bg

Combining this with (40) and the triangle inequality then yields (36). Finally, let us show that
the assumptions in (i) and (ii) guarantee a certain decay of the last term in (36).
(i) Suppose Iy = [pq ||w||k|g(w)| dw < oo for some k € NT. Then

/ Ig(W)Idws/ (m)klg(vv)ldws Ly
RY\Bg R:\Bg \ R Rk
Thus, the right-hand side in (36) is bounded by

+1
Ve, i _ R'T ey 4C LI
VN RT YN RK

which becomes the right-hand side of (38) if we take R = N“ and choose « to make both

terms of the same order, that is, a"—;l — % = —ak.

(ii) Suppose I = [pq exp(C||w|/¥)|g(W)| dw < oo for some k € NT and C > 0. Then

I
dW</ exp(C[|lw[* — R w)|dw < ———-.
Loy Jeomlaw= [ exp(Cliwli — R [som]aw = b

Thus, taking R = (€¢M)1/k the right-hand side in (36) is bounded by

+1
V Cr n Iy - RqTCM,qC;< . Iy
VN  exp(CR¥) — VN VN’ O

Recall that W52(RY) denotes for k € Nt the Sobolev space consisting of all functions
u: R? — R whose mixed partial derivatives D*u of order o € N? with oy + -+ + gy <k
satisfy D%u € L?(R9). For u € L' (R?) we denote by u(£) = Jra e~ 6.2 (z) dz, & e RY, the
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Fourier transform of u. By [7], Theorem 6.1, the space Wk-2(R?) consists of precisely those
u € L2(R?) for which the norm

12
ull = (/R @ (1 + ||§||2)"d£)

is finite.

The next corollary specializes Corollary 1 to functions in W*2(R?) for sufficiently large
k. Analogous results could be derived for the Sobolev spaces WX ?(R?) for p > 1 and for
generalized Sobolev spaces (see [4], Section 6.2) with p = 1 even without restrictions on k.

COROLLARY 2. Let k € N with k > % + 1 + ¢ for some ¢ > 0 and suppose H* €
W52(R2) N LY (RY). Let R = NV/Ck=2¢+D) " suppose the rows of the My n-valued random
matrix A are i.i.d. random variables with uniform distribution on Bg C R4, suppose the en-
tries of the RN -valued random vector ¢ are i.i.d. random variables uniformly distributed on
[—max(MR, 1), max(M R, 1)], assume that A and ¢ are independent and let o : R — R be
given as o (x) = max(x, 0). Then, there exists W (a M y-valued random variable) and a
constant C > 0 (depending on q and M, but independent of H*, N) such that

S E[| Hy* (2) — H*@)|*)* < [ H*| N~

withoa =2+ kf’q}rzl)_e. C is explicitly given in (43).

REMARK 7. In the neural network H{;‘,’C only the weights W are trainable, whereas A, ¢
are generated randomly. Therefore, it is clear that the approximation capabilities of these
networks are smaller than those of neural networks in which all parameters can be trained.
This intuition is confirmed when comparing the error rate 1/« < 1/2 in (41) to the rate k/gq
obtained in [25, 29], since k/q > 1/2 for k > g/2. However, the advantage of the result
in Corollary 2 is that training the random neural network H{,t;g is straightforward: it only
requires to solve the (convex) optimization problem over W, which is mathematically very
well-understood. In contrast, in the case of fully trainable neural networks one typically uses
stochastic gradient descent type algorithms for parameter optimization, for which a rigorous
mathematical error analysis for general shallow neural networks is challenging.

PROOF. First, using the Cauchy—Schwarz inequality and the assumptions on H* we ob-
tain that H* € L' (R%); see (42). Hence, the Fourier inversion theorem yields the represen-
tation (34) with g = (271)_‘1f1\* e L'(R?) and all z € RY. Thus, the constant C ;f in (35) is
bounded by

C; =117,

Furthermore,

2
42 k—s 2\—s 2k | Tr% 2
42) (/Rq lwl |g(w)|dw> §/Rq(1+||w|| ) dw/Rq(H”W” VeI HF (w)|? dw,

which is finite for s > g /2 (see, e.g., [7], page 193). Choosing s = ¢ /2 + ¢ yields k — g /2 —
¢ > 1 and we may therefore apply Corollary 1 to obtain that there exists W (a M; y-valued
random variable) such that

(g+D
k—.

217! [CM,qC;( + kas]

E[|Hy® @) — H @) "] < N2+

< N—[2+—k£‘2721),€]71 C ” H* ”k
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with ¢j, , = 16max(M, 1)Voly (B1)(M + 1)>(M? + M + 16) and

' 12
(43) C=cuqgQr) 7+ (/Rq(l +Iwl) ™ dw) .

This completes the proof. [

Finally, we prove a further consequence of Theorem 1. The result in Proposition 4 below
allows for a larger class of functions H* (possibly defined in terms of essentially lower-
dimensional functions, for instance, as a sum of univariate functions) and shows in particular
how the sampling scheme in the previous results can be modified in order to cover this more
general case; while the rows of A were sampled from the uniform distribution on the ball
Br C R? in Corollary 1 above, in Proposition 4 the matrix A is in general a sparse random
matrix with entries drawn from lower-dimensional balls B§ CRKk=1,...,q.

PROPOSITION 4.  Suppose H*: R? — R can be represented as
H@= [ ™ aaw)
RY
for some complex measure 1 on (RY, B(R?)) and all z € RY with ||z|| < M. Assume that

[, max(t. W)l @w) < oo.

Suppose Ky, ..., Ky are i.i.d. random variables with values in {1,...,q} and for i =
1,..., N, conditional on K; = k the ith row A; of A is sampled as follows:

e select (uniformly randomly on {1, ..., q}) k nonzero entries
e draw these entries from the uniform distribution on Bg C R
e set the remaining N — k entries to 0

and ¢&; is sampled uniformly on [—max(M R, 1), max(M R, 1)]. For k=1, ..., K denote by
A1 the Lebesgue-measure on R, let py = P(K| = k) and assume that

q
(44) ALY Pk Y. Q- Qg
k=1 Ul seees g €{80,A1}
#Hjmj=rl=k

Let o: R — R be given as o (x) = max(x, 0). Then:

(i) Lpglil + Lpgll~™ < wx, where wx denotes the distribution of A,

sy d(@p, |al+1p, |0~ .
(1) ifg= ( BR'”(LHXBRW )satzsﬁes

(45) / max ([[w]|?, 1)g(w)?mx (dw) < oo,
Bg
then there exists W (a M y-valued random variable) such that
AL « 2912 _ ~VC / .
E||Hw* (Z) — H*(Z <—++ dw),
[| Hy* Z) — H*(@)[] T G

where

C =8M?max(MR, 1) max(M, 64) f max (|| wl|>, 1) g(w)*mx (dw).
B
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PROOF. To prove (i), suppose B € B(R?) satisfies wx(B) = 0. Let Uy ~ my, where my
denotes the uniform distribution on B§ = Bgr C RK. By construction, forallk =1, ..., g with
pr>0andall ji,..., jx €{1,...,q} we have (with T}, ; denoting the map that embeds
R in R? by inserting O at each component j & {1, ..., ji}) that

0=P(A1 € BIKi =k, A1, #0,..., A1 j, #0)

.....

.....

;,le ..... jk(BmB;]?):A;k]lB(le ..... jk(wl,...,wk))]le(wl,...,wk)dwl-“dwk=0.

This shows that B N qua is a nullset for each of the measures on the right-hand side of (44)
and so, by (44), also for /1 (and consequently for || and || 7).

To show (ii) note that P-a.s. ||A;|| < R and so we may apply Theorem 1 to X =R? and
the function H*(z) = Jra eitwzg Br(W)(dw). By assumption on ¢;, the function F, ap-
pearing in Theorem 1 is given for |x| < max(MR, 1) as Fp(x) = 2f_0x 2max(MR,1)du =
4xmax(MR, 1) and so C* = C{ in Theorem 1 becomes

C* =4M?> max(MR, 1)<M / Iwl1?g (W) (dw)

Br

+ 64/3 max (|| w]|?, 1)g(w)27r;g(dw))

< 8M2 max(MR, 1) max(M, 64) / max (w3, 1)g(W)2.x (dw)
Bg

and (16) is indeed satisfied by (45). The statement then follows precisely as in the proof of
Corollary 1 by estimating the difference | H*(z) — H*(z)| < qu\ Bk || (dw) for z € By C RY
and applying the triangle inequality. [

4.3. Universal approximation by random ReLU networks. In this subsection we present
a further corollary, which proves that feedforward neural networks with randomly generated
inner weights are universal approximators in L?(RY, ;1) for any probability measure . on
(R?, B(R%)).

To formulate the result let us first introduce the scheme according to which the weights
are sampled. For any p > 1, R > 0 consider the following scheme to randomly generate
weights:

(i) Let Ay, Ay, ... be i.i.d. random vectors drawn from the uniform distribution on the
ball B C RY,
(i) let ¢y, &2, ... be i.i.d. uniformly distributed on [—p, p], independent of {A;}; cn+.

Note that the only parameters that need to be trained for the neural networks in Corollary 3 are
the outer weights Wy, ..., Wy (once N is fixed and the inner weights A1, Ao, ..., &1, 00, ...
are sampled randomly). These outer weights can be trained using least-squares minimization.

COROLLARY 3. Let i be a probability measure on R4, G € L>*(R?, ) and let o : R —
R be given as o (x) = max(x, 0). Then for any ¢ > 0, § € (0, 1) there exist N € NT, R > 0,
o > 1 and real valued random variables Wy, ..., Wy (“outer weights”) such that the random
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feedforward neural network (with “inner weights” (A1, ¢1), (A2, £2), ... sampled as in (i)-
(i) specified by

N
Gn@ =) Wio(Ai-z+¢), zeR
i=1

approximates G in L>(RY, 1) up to precision & with probability 1 — 8, that is,
qu 1G(z) — Gy ()" n(dz) < 2.

PROOF. First, by using [20], Lemma 1.33, and the fact that the set of compactly sup-
ported infinitely often differentiable functions C°(R?) is dense in the space of continuous
functions with compact support C.(R?) in the supremum norm we find H* € C2°(RY) satis-
fying

/8

(46) [/Rq}H*(z) - G(z)|2M(dz)T/2 <=

Denoting by H H*(w) = Jrae™ i(w.2) f1*(z) dz the Fourier transform of H* and setting g =
2m)~4 H*, it follows that H* can be represented as (34) for all z € RY, that g € L' (R?) and
(35) holds. Choose M > 0 large enough to guarantee that the support of H* is contained in
By, denote by Z arandom variable with distribution wandsetZ =Zlg,, (Z) +201Ra\ By, (Z)

for an arbitrary zg € By \ By. Then |Z|| < M and H*(Z) = H*(Z) and all the assump-
tions of Corollary 1 are satisfied. We now select the hyperparameters as follows: choose

R > 0 large enough to guarantee fRQ\ Be 18(W)[dw < %g and then take N € N to guaran-

VCr

tee TN < # (with C} given in (37)). Furthermore, let p = max(M R, 1). Inserting these

estimates in the right-hand side of (36) and applying Corollary 1 shows that there exists
W= (W;---Wy) (a M, y-valued random variable) such that

e/8
o

Combining this with (46), H{?‘V’;(z) =Wo(Az+¢)=Gn(z), H*(Z) = H *(Z) and the tri-
angle inequality yields

E[|Hy* @) - H*@)["]"* <

) 12
E[/ |G(z) — Gy (2)] ;L(dz)] < eV,
R49

Applying Markov’s inequality then shows that

2 12 1 2
IP’((/ |G(z) — Gn(2)| u(dz)) >8) < _ZE[/ |G(z) — Gy (2)| u(dz)} <$
RY € R4

as claimed. O

5. Approximation error estimates for echo state networks. In the results formulated
above in Section 4 we were concerned with the static situation and approximations based on
random neural networks. We now turn to the dynamic case. Thus, we consider Dy C R? and
inputs given by semi-infinite sequences in X = (Dy)%-. The unknown mapping that needs
to be approximated is denoted by H*: (Dy)%~ — R and is called a functional (see also
Section 2 for further preliminaries on the dynamic situation). In applications, H* is typically
approximated by reservoir functionals. Recall that a reservoir functional is a mapping H ¢
defined as the input-to-solution map X 3 z — yg € R™ of the state space system (3)—(4).
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The goal of this section is to derive bounds for the error that arises when approximating
the functional H* by such reservoir functionals. We will be focusing on two of the most
prominent families of reservoir systems, namely linear systems with neural network readouts
(Section 5.2) as well as echo state networks (Section 5.3). Beforehand, in Section 5.1 we in-
troduce the setting in more detail, describe the regularity assumption that is imposed on H* in
both cases and characterize a general class of examples in which it is satisfied. As a corollary
of the approximation error bounds derived in Section 5.3 we prove in Section 5.4 that echo
state networks with randomly generated recurrent weights are universal approximators. This
proves, in particular, that echo state networks with randomly generated weights are capable of
approximating a large class of input/output systems arbitrarily well and, in conjunction with
the error estimates in Theorem 2, thus provides the first mathematical explanation for the
empirically observed success of echo state networks in the learning of that kind of systems.

5.1. Setting and regular functionals. In order to approximate the unknown functional
H*: (Dg)% — R™, in applications the procedure is typically as follows. In a first step, the
reservoir map F in (3) is fixed (often generated randomly). Then the readout function /4 in
(4) is trained by minimizing a prefixed loss function in order to approximate H* as well
as possible. In what follows we will be interested in quantifying the error committed when
using an approximating reservoir functional for H* conditional on the random elements used
to generate it and with respect to the Lz((Dd)Z*, nz)-norm for a probability measure @z on
the space of inputs ((Dg)%-, B((Dg)%-). More specifically, throughout this section, Z is a
(D)% -valued random variable, that is, a discrete-time stochastic process, we denote by uz
its law on (Dd)Z* and we assume that 0 € D; C By € R%. To simplify the statements we
choose m = 1 here, but all the results can be directly generalized to m € N*.

The functionals H*, for which the approximation bounds in Section 5.2 and Section 5.3
can be derived, are required to satisfy certain regularity assumptions. These will be stated
in Assumption 1 below. Beforehand, we introduce a Lipschitz-continuity condition which
quantifies how quickly H™* forgets past inputs and is thus linked to its memory; see also [15]
for a thorough discussion.

DEFINITION 1. Consider a sequence w € (0, 00)%- with ZjeZ_ [jlw; < oo. We say that
H* is w-Lipschitz continuous, if there exists L > 0 such that
47) |H*(w) — H*(V)| < Lllu—v|1,»
for all u = (u),ez_ € (Da)?. V= (V/)iez_ € (Dg)*~, where

o0
lu=vilw:=_ w_iluj —v_ll.
i=0

ASSUMPTION 1. Suppose that H*: (Dg)%~ — R is w-Lipschitz continuous for some
w € (0, oo)Z* with ZjeZ_ |jlw; < oo and assume that for any T' € Nt:

(i) The restriction of H* to sequences of length 7, which is given by the function
Hi: (Dg)T*! — R defined by Hi(zo,...,2_7) = H*(...,0,2_7,...,20), can be repre-
sented as

Hj(u) = f '™ W g7 (W) dw
R

for a C-valued function g7 € L'(RY) and all u = (zg, ..., z_71) € (D)t c RY, with ¢ :=
d(T +1).
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(i)

@9 _/Rq max (1, [|w]*)| g7 (w)|* dw < oc.

We now provide a general class of examples that satisfy Assumption 1. This class includes,
for example, state affine systems, linear systems with polynomial readouts, and trigonometric
state affine systems as long as the matrix coefficients in these systems fulfill certain conditions
that guarantee that the condition (i) in the next proposition is satisfied. We refer to [10-15]
for a detailed discussion of these systems.

PROPOSITION 5. Let p > 0 and suppose H* is the reservoir functional associated to
the reservoir system (3)—(4) determined by the restriction to B, x Dy and B, of the maps
F: RV xRY— RN and h: RN" — R, respectively, and that satisfy the following hypothe-
ses. First, F (B, x Dg) C B, and, additionally, there existr € (0, 1), Lr, Ly > 0, such that:

(1) foranyz € Dy, F|B—prd(., Z) is an r-contraction,

(1) foranyx e B_p, FlB_prd (x, -) is L p-Lipschitz,

(iii)) F and h are both infinitely differentiable.

Then H* = h(HF‘Ede) satisfies Assumption 1.

PROOF. First, (iii) and the mean value theorem imply that h|B—p: B_p — R is Lipschitz
continuous. In what follows we denote by L, the best Lipschitz constant of hlB—p. Second,
note that Proposition 1 guarantees that Hr|—  is indeed well defined. For notational sim-

0

Dy
plicity write Hp = Hp |, g Then for any u, v € (Dg)%-
/)X

|Hp (w) — HE (V) ||
= |F(HF(u.—1),u0) — F(Hp(v.—1), Vo) |
< |F(HF(.-1),u0) — F(HF (v.—1), o) | + | F(HF (v.—1), o) — F (HF (v.—1), Vo)
<r|Hp._) = Hr(v.—Dll + LF|uo = voll,

where we used the echo state property in the first step, then the triangle inequality and finally
hypotheses (i)—(ii). Iterating this estimate we obtain

o
|H*(w) — H*(V)| < LyLr Y r*lug = v_ill = Llu = V]| 1w
k=0

for L=LpLrandw_; = r, j € N. This proves that H* is w-Lipschitz continuous.
Let T € NT. By the echo state property we can write H;: as

(49) Hi(zo,....2_7)=ho F(-,z9)o---o F(H*(...,0,0),z_7)

for (2o, ...,z_7) € (Dg)TT!. The expression on the right-hand side of (49) can be used to
extend Hj to R4 T+ = R4 and hypothesis (iii) implies that H7 is infinitely often differ-
entiable. Let x : R — R be a compactly supported C* function that satisfies x (x) = 1 for
x € [-M?, M?]. Define G: (RY)T+! — R by

G(uy, ...,ur) = Hy(ug,...,ur)x(luol?)--- x (lur|?).
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Then for (2o, ...,z_7) € (Dg)" ! one has ||z_;|| < M and thus X(||Z—i||2) =1 fori =
0,...,T. Consequently, G = H; on (Dd)T+1. Therefore, the claim will follow if we prove
that G can be represented as

(50) G(u) = /R W g (w) dw

for some g7 € L'(R?) satisfying (48) and for all u € R?. However, G is a smooth fgnction

with compact support and therefore a Schwartz function. Thus, its Fourier transform G (w) =
et . on.

fra € (W.W) G (u) du is also a Schwartz function. The Fourier inversion theorem thus yields

(50) with g7 = (Zn)_qé and the integrability conditions g7 € L' (R?) and (48) hold because
gr is a Schwartz function. [

5.2. Approximation based on linear reservoir systems with random neural network read-
outs. Inthis section we study approximations of the unknown functional H* based on reser-
voir functionals H&C determined by (random) linear reservoir systems with random neural
network readouts. More precisely, for g, N € N let S € M, ¢ € M 4 and let A and ¢ be
My 4 and My ;-valued random matrices and vectors, respectively. For any readout matrix
W e M y consider the reservoir system given by

(51 {Xl =SX;,_1+c¢cZ;,, teZ_,

Y, =Wo(AX; +¢), teZ_.

Clearly, when the associated system with deterministic inputs z € (Dg)%~ (which is a linear
system with random neural network readout; see (27)) given by

(52) X, =Sx,_1+cz, teZ_,
(53) vi=Hytx), teZ.,

has the echo state property, then the solution to (51) can be obtained by evaluating the filter
associated to (52)—(53) at the stochastic input Z.

REMARK 8. For notational simplicity we take S, ¢ deterministic here. However, Propo-
sition 6 directly extends to randomly drawn S, ¢ satisfying [P-a.s. the hypotheses of Proposi-
tion 6. The expectation in (54) is then conditional on S, c.

PROPOSITION 6. Let N,T e N*, R, My > 0 and g = d(T + 1). Suppose the rows of A
are sampled from the uniform distribution on Bg C R? and the entries of ¢ are uniformly dis-
tributed on [—max(M7 R, 1), max(M7 R, 1)], let 0 : R — R be given as o (x) = max(x, 0),
assume that (52) satisfies the echo state property, the matrix

K:(c Se¢ - STC)

is invertible, | Xo|| < M7 and K='Xy € (Dg)T+'. Then for any H*: (D)%~ — R satisfying
Assumption 1 there exists W (a M y-valued random variable) such that

E[|Yo — H*Z))*]'/* < Y==K 4 Idet(K)‘ |gT(KTW)‘ dw + LM( S w_i>
54 N /R‘I\BR =T

’

T 1/2
+L<Z wi,.) IKISTHIX 7
i=0

where Cr. R is given in (59).
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REMARK 9. The bound in Proposition 6 shows, in particular, that for suitable choices of
S (for instance, as given in Remark 10 below) the approximation error can be made arbitrarily
small. Indeed, if ¢ > 0 is given, T is large enough and STJrl =0, then the last term in (54)
vanishes and the third term satisfies LM Y 727, w—; < §, since the weighting sequence w
is summable. Next, one chooses R > 0 to make |det(K)| qu\ B | gr(KTw)|dw < % (this

N CrT,R &

is possible, since g is integrable) and finally (with R, T now fixed) N so that N <3

Altogether, one obtains that

E[|Yo — H*Z)|*]'* <«

PROOF. First, the hypothesis that H* is w-Lipschitz continuous yields (see (47)) for any
ze (Dy)%-

(55) yH;(zO,...,z_T)—H*(z)|5L< > w_i||z_,-||)§LM< > w_i>.

i=T+1 i=T+1

Second, using once more the w-Lipschitz property (47) and Holder’s inequality show for any
u=(w)=0,..7,V=(V)i=0,..7 € (Dg)" ™' that

T T 12 /1 172
|Hf (0) — Hf (v)| < L(Z w—illa; — Vi||) < L(Z wz,-) (Z la; — Vi||2>
i=0

i=0 i=0
and therefore
T 1/2
(56) |Hi(Zo,...,Z_1)— H; (K 1Xo )| <L(Zw ) |(Zo, ..., Z_7) —K_1X0H.
i=0
Iterating (52) yields the representation

T Zy
Xo=Y S'¢Z ;i +S"X 71 =K| : [+8"TX 7,
i=0 Z—T

which we insert in (56) to obtain

T 1/2
(57)  |Hj(Zo,...,Z-1) — HFf (K~ 'Xp)| < L(Z w%l) IK~ISTHIX 4.
i=0

Third, consider the function G : By, — R defined for v € By, C RY by
G(v) = |det(K)| / MV or (KT w) dw,
Ra

which is indeed well-defined because gr is integrable. Then the change of variables formula
and Assumption 1 yield

H7(K™'Xo) :/n;q o/ KW X0) g (w) dw
— |det(K)| fR X0l (KT w) dw = G (Xo).

Therefore, the function G satisfies the hypotheses of Corollary 1 (integrability again follows
by the change of variables formula) and so by Corollary 1 there exists W (a M y-valued
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random variable) such that
A, - 211/2
E[| Hy* (Xo) — [H7 o K™']Xo)[*]"

(58) _/Cix
<Y

+|det(K)|/ |gT K'w)|dw,

where

Cr.gr = 16max(Mr R, 1)Vol, (Bg)(Mr + 1)*(IM71* + M + 16)

(59)
x |det(K)|2/B max(L, 1) g7 (KT w)[* dw.

By using the triangle inequality and inserting the bounds obtained in (55), (57) and (58) one
thus obtains the approximation bound (54), as claimed. [l

REMARK 10. An important special case is

0sar 044 ) < 1, )
60 S= ’ ’ d ¢c=
(60) P < Lir 0474 an 0474
for p € (0, 1]. In this case one calculates STt —Qandfork=1,...,T

0gs,q
Ske = pk 1, .
04(7—k),d

Thus, for example, for p = 1 one obtains K = I 4(741) and so in particular K is invertible and
[K~!|| = 1. In addition, the system (52) satisfies the echo state property and the solution is
given by x; = (z;r, pz;;l, R p z,_ T)T teZ._.

5.3. Approximation based on echo state networks. In this section we use an echo state
network with randomly generated parameters as an approximation to the unknown target
functional H*. More precisely, for N e Nt let A, C and ¢ be Mg, M N.d and M N’l—valued
random matrices/vectors, respectively, and for any readout matrix W € M, 5 consider the
reservoir system given by ’

X;=0(Ax,_1+Cz +¢), t€Z_,
vi=Wx;,, teZ_

for z € (Dg)%. Such a system is called an echo state network. If this RC system has the
echo state property (see Section 2), then the reservoir functional H{?V’C’C(z) = yp (i.e., the
input-to-solution map (D)% 52+ yo) is well defined and measurable. Evaluating H‘?V’C’C

at the stochastic input signal Z then amounts to solving the associated system with stochastic
input

61 {tho(AXt_l—l—CZ,—lr{), teZ._,

Yt:WXt, IEZ,

The next result shows that it is possible to generate A, C and ¢ from a generic distribution
(not depending on H*) and use this generic echo state network to approximate H* arbitrarily
well. Thus, X is universal and to approximate H* only the readout matrix W € M, 5 needs
to be trained, a task which amounts to a linear regression. ’
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THEOREM 2. Let 6: R — R be given as o(x) = max(x,0). Let T,N ¢ N*, R > 0,

assume that || (Zo, ..., Z_7)|lgar+1y < Mt and generate A, C, ¢ according to the following
procedure:

() draw N i.i.d.samples Ay, ..., Ay from the uniform distribution on Bg C RT+D and
N i.id. samples ¢1, ..., N (also independent of {A;}i=1....N) from the uniform distribution

on [—max(M7R, 1), max(M7R, 1)],
(i) let S, ¢ be the shift matrices defined in (60) with p = 1 and set

Al 0,
az| A=(S ) eo(c), f-|®
= .T 9 - as 0N7N bl i ac 9 i E bl

An ZN

(A -A _(C (¢
S A C IR
Then for any H*: (Dg)%~ — R satisfying Assumption 1 there exists a readout W (a

M o(N4da(T+1))-valued random variable) such that the system (61) satisfies the echo state
property and

/C o0
(62) E[|Y0 — H*(Z)|2]1/2 < % +/Rq\B }gT(u){du—l-LM( Z w_,~>

i=T+1
with
Cr,g = 16max(Mr R, 1)Vol, (Bg)(Mr + 1)*(IM71* + M7 + 16)

(63)
X /BR max(1, ||u||3)|gT(u)|2du.

REMARK 11. The process X in (61) is not related in any way to the unknown functional
H*. X is generic and can be viewed as a “reservoir” that efficiently stores the information
about the history of the input process Z. Theorem 2 shows that for any “sufficiently regular”
functional H* one can approximate H*(Z) by WX for an appropriately chosen W, that is, by
applying a linear mapping to Xg. This phenomenon is analogous to the situation encountered
in continuous-time stochastic processes satisfying certain stochastic differential equations,
which can be approximated by applying a linear functional to the signature of the driving
path; see for example, [21], Chapter 5, [8], Chapter 18. See also [6] and [5].

REMARK 12. For simplicity (and to give a fully constructive sampling procedure) we
have chosen here for S, ¢ the shift matrices defined in (60) with p = 1. However, Theorem 2
can be directly generalized to p € (0, 1) and arbitrary S, ¢ satisfying the hypotheses stated
in Proposition 6. The bound (62) is then replaced by the bound (54) and the constant Ct g
given in (63) is replaced by (59).

REMARK 13. By using Markov’s inequality the bound (62) immediately yields a high-

probability bound on the approximation error conditional on the reservoir parameters: for any
8 € (0, 1) it holds with probability 1 — § that the (random) echo state network H&,’C’C satisfies
172 T,R,N
AszC % 2 ¢ ( ’ ’ )
H, z)— H (z dz ) <=2 7
</<Dd>z—| w @ — H' @) uz(dn) ;

where ¢ (T, R, N) is the right-hand side in (62).
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PROOF. First, Proposition 6 and Remark 10 show that for any H* satisfying Assump-
tion 1 there exists w (a Mlj y-valued random variable) such that the bound (62) holds with
Yo= YOLm satisfying

Xt —gxtin 4 ez, reZ_,
Y,Lin =wo (aXl‘in +b), teZ_

andb" =(¢; -+ ¢n). Nowset W= (0;, w)and W= <W 01,q+N)- We first show
. . o Xbin . R ORY
that (61) has a solution. To do this we define X; = (aXtU"er) and claim that X, = (a(—i(,)) is

a solution to the first equation in (61). Indeed, we first calculate

- _ B SxLin +cZ XLin _
AX, | +CZ +1= 2 D . R -
t—1 + t + ; ( SXLI _|_ ath _|_ b) (an_,ln + b t

and then insert this to obtain

o(AX,_ 1+CZ¢+§)_U(< A{;) (O'(Xt 1) —0o(— X, 1)) (C6>Zt+(_;g>>

—o (% )-x.

= WX, = Wo (X,) = wo (aX“" + b) = Y11

as claimed. In addition,

and so we have constructed a solution to (61) and proved that (62) holds. It remains to be
proved that the system (61) satisfies the echo state property. To do so, consider an arbitrary
solution (U, Y ) to (61), that is, (U, Y) satisfying

U[ZG(AUt_1+CZ;+§)v IEZ_,
i}t=WUt, IGZ_

(1] . _
Partitioning U, = (EEZ]) (with U valued in RIT+D+N) and setting U, = U — U one
t

calculates
A C C
e () v (G (5)

o A_I_J_t—l +C_Zt +L_'_
—(AU;_1 +CZ; +-¢)

(64)

and therefore
65) U, =0(AU,_1+CZ, +2¢) —o(—(AU,_; +CZ, + &) =AU, + CZ, + .

_ il _ _
By further partitioning U; = (gfﬂ) (with UM valued in RYT+D and U valued in RV) one
t

obtains from (65) that

ol SO, + ez,
(66) =[2] | = (1] :
U; aSU,_, +acZ,; +b
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However, the linear system (52) satisfies the echo state property and so I_JP] = X%i“. Inserting

this in (66) shows that I_JEZ] = an“in + b. This proves that U; = X;. Using this in the second
step and inserting (65) into (64) in the first step shows that

(o) \_[oX)\_
U= (a(—fm) = (a(—&)) =X

and hence also Y = Y , as claimed. [

REMARK 14. As explained in Remark 11 the state process X can be viewed as a “reser-
voir” that stores the history of the input process Z. Choosing X as an echo state network, that
is, evolving according to the dynamics specified in (61), is the most commonly used choice
in practical applications in reservoir computing; see, for instance, [19, 30]. From a purely
mathematical point of view it could also be interesting to look for other choices of update
functions G so that for X; = G(X;_1, Z;) a similar result to Theorem 2 can be proved. How-
ever, proving such a result would require different techniques than those used in the proof of
Theorem 2 (which, due to its reliance on Corollary 1 via Proposition 6, is specific to the neu-
ral network choice made here) and G cannot be chosen arbitrarily. For instance, if we choose
o (x) = x in (61), then WX is a linear functional of Z, which cannot be used to approximate
the (in general nonlinear) functional H*.

REMARK 15. Let us be more specific about how echo state networks are used in appli-
cations. In many situations, the goal is to learn an unknown input/output system from data.
For example, in [19, 30] the considered task is to predict the evolution of chaotic dynamical
systems based on observational data. In general such problems can be phrased using a target
process Y = (Y;)scz and an observation process Z = (Z;);cz. The goal is to predict Y; based
on (Zs)s<;. For instance, the target process is Y; = H*((Zs)s<;) or Y; = Z;p, for some h > 0
(which corresponds to learning the functional H*((Zg)s<;) = E[Z;44|(Zs)s<¢]). To achieve
this goal, echo state networks as introduced in (61) are used. First, the parameters A, C and
¢ are generated according to some given distribution (for instance, all entries are drawn from
a normal distribution). Then the readout matrix W is trained by a linear regression using past
data, that is, by solving

T
W= argmin > IWX, i~ Yy i
k=1
and W*X; is then the prediction of Y;. This is in practice repeated for different random sam-
ples A, C and ¢ and an optimization over some hyperparameters is carried out. This procedure
has been successful at learning input/output systems in a wide range of applications, in the
sense that echo state networks have been able to achieve a low mean squared prediction error
[W*X; — Y,|| in comparison to other methods. In view of Remark 3, Theorem 2 directly
provides error bounds for this procedure in the case Y; = H*((Zs)s<;). In the case when
Y, is a general random vector not necessarily measurable with respect to the sigma-algebra
generated by (Zy);<, (for instance, if Y; = Z;1;) then the approximation error bounds in
Theorem 2 can be combined with the generalization error bounds in [10] to obtain an error
analysis for echo state network-based learning also in this case.

In order to use the bound in Theorem 2 in practice one can now prescribe an approximation
accuracy ¢ > 0 and subsequently select the hyperparameters R, T, N so that the right-hand
side of (62) is smaller than e. The next result provides a special case of Theorem 2 when H7.
is in the Sobolev space W*2(R?).
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COROLLARY 4. Let 0: R — R be given as o(x) = max(x,0) and let w € (0, 00) %~
with 3z |jlwj < oo. Let T,N e N*, let g =d(T + 1), let ke Nwithk >4 +1+¢
for some € >0 and let R = N1/Ck=2e+D) " Agsume that |(Zo, ..., Z_71)|gir+y < M7 and
generate A, C, ¢ according to the procedure described in (i)—(ii) in Theorem 2. Then for
any H*: (Dg)%~ — R that is w-Lipschitz continuous with Lipschitz constant L and satis-
fies H]”i € Wk’z(]Rq) NnL! (R?) there exists a readout W (a My o(N+a(T+1))-valued random
variable) such that the system (61) satisfies the echo state property and

o0
sllvo— '@ <clafl e+ L 3 )
i=T+1

withoa =2+ kﬁ'{izl)_s and

C = [16 max(Mr, 1)Vol, (B))(Mr + 1)2(IM7 ] + M7 + 16)]'/?

5 1/2
+(/ (14wl ™ ‘de) :
R4

PROOF. The corollary is a consequence of Theorem 2 and Corollary 2. More specifically,
to deduce the desired result from Theorem 2 it suffices to prove that the first two error terms
in (62) are bounded by C| Hj|[xN —1/@_ To this end, note that these error terms arise when
applying Corollary 1 in (58). Our hypotheses allow us to apply Corollary 2 instead of Corol-
lary 1, which directly yields the desired expression for the upper bound and the constant.

]

@2r)™?

We now provide an example in which, for each N, good choices of the hyperparameters T
and R can be given explicitly as a function of N and thus also the bound (62) depends only
on N.

EXAMPLE 1._ Letd=1,Dy;=[-M, M], » € (0, 1) and consider the functional H*(z) =
exp(—% YoM (z—i)?). Then H* satisfies the hypotheses of Theorem 2 and we may choose
R, T appropriately to obtain for any N € NT

2 P
=Ny

for some slowly growing function p (a power of logarithms of N) and some y > 0. We

carefully prove this in the next lemma.

E[|Yo — H*(Z)|]

LEMMA 2. Let B > a > 0 satisfy 1 > (1 —log(2) +log(B/a)). Then for any N € NT
the ESN approximation constructed in Theorem 2 with T + 1 = alog(+/N), R = Blog(~/N),
satisfies
112 < p(N)

=Ny
with p: (0,00) > R and y > 0 given in (72) and (73), respectively.

E[|Yo — H*(Z)|?

PROOF. First, using that f,: [0, 00) — [0, 00), f.(x) = exp(—x/2) is 1/2-Lipschitz,
one estimates

1 oo oo
[H* () = H' )] < 5 Y A [-)? = )] = MY A=) — (v=p)|
i=0

i=0
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and so H* is w-Lipschitz for w = (M) ren. Second, let T = diag(1, A, ..., AT. Noting that
H7 is the characteristic function of a N (0, ¥)-distributed random variable one has for any
u=(20,...,2-1)

1L .
HF (u) = exp<_§ %w (z_,-)2> R /R e Mg (w)dw,
1=

where g7 is the density of a A/(0, X)-distribution. In particular, g7 is integrable and (48)
is satisfied. Choosing p = VA in the shift matrix (60) we note that K = £1/2 is invertible.
By Theorem 2 and Remark 12 it follows that the approximation bound (54) holds with C7 g
given in (59). The last term in the bound (54) is 0, since ST+1 = 0. For our choice T + 1 =
alog(+/N) the second to last term in the bound (54) equals

o0
(67) LM Y w_i=A"TLM/1 - =
i=T+1

7\/ﬁalog(l/k) LM/(1—=)).

Denoting by V a N/ (0, I 7 1)-distributed random variable, the second term in the right-hand
side of (54) can be written as

Iwi2

|det(K)|/ \gT K'w)|dw= (271)_(T+1)/2/ e” 2 dw=P(|V|| > R).
]RT‘H\BR

Recall that || V||? has a chi-square distribution with 7' + 1 degrees of freedom. Using this and
the fact that RZ > T + 1 (because B > «) one estimates

5 (T+1)/2
(68) :

Wﬁ/Z—a/Z—a log(B/a)/2°

Finally, one calculates

ydet(K)|2/ max(1, ||w||3)|gT(KTw)]2dW§R3(2n)—(T+1)/ oW gy
Bgr RT+1

(69)
— R3(27T)_(T+l)/22_(T+1)/2.

Recall the following standard estimate for the volume of the ball B C RY:

(70) Vol, (Bg) < — [herﬂkq
(s R) < —|— .
! varl g
Inserting (69), M7 < /(T + 1)M and (70) in (59) yields (for M7 > 1, R > 1)
211 €R2 (T+1)/2
71 Crr<="—M(T+1 3R4[7]
(71) TR=— (T+1) 2T+ 1)

We may now put together all the terms that we estimated separately: inserting (67), (68) and
(71) in the approximation bound (54) yields

12 _ p(N)
E[|Yo— H*(2)|*] <A
where
(72) y:lmm{amg@—l),ﬁ (14 log(B/a)). 1= 5 (1 ~ log(2) + log(/) .
2 272 2

2! 7.3 LM
(73) p(N) ="M (logWVN)) " + 1+ .
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Note that the second term in (72) is positive, since 1 + log(x) < x for x > 0 and since o < S.
The last term in (72) is positive by assumption on «,  and so indeed y > 0. [J

5.4. Universal approximation by echo state networks. As a corollary of the echo state
network approximation error bounds in Theorem 2, we also obtain a constructive ESN uni-
versality result; see Corollary 5 below. This complements the ESN universality resultin [11],
Theorem III.10. The key novelty of Corollary 5 is that a constructive approximation proce-
dure (up to tuning the hyperparameters N, T, R and carrying out a regression to estimate
W) is given, whereas [11], Theorem III.10, is an existence result. Note also that the setting is
slightly different (the activation function here is ReLU and the inputs are uniformly bounded).

COROLLARY 5. Let H*: (Dg)%“ — R measurable satisfy that E[|H*(Z)|*] < oo and
let 0: R — R be given as o(x) = max(x,0). Then for any ¢ > 0, § € (0, 1) there exists
N, T e N, R > 0 and a readout W (a M 2(N+d(T+1))-valued random variable) such that
the system (61) (with A, C, ¢ generated according to (i)—(ii) in Theorem 2 for M7 = M JT)
satisfies the echo state property and (denoting by H&,’C’c the associated random ESN func-
tional) the approximation error satisfies with probability 1 — § that

1/2 1
(/(Rd)z_ |y @) — H*(Z)|2/Lz(dZ)> —E[|Hy ¢ @) - H*@)|*(A, C, ¢]?
<E.

PROOF. First, by standard properties of the conditional expectation (see, for instance,
[11], Lemma A.1) we may find 7* € N* satisfying

12 _ ﬁ

3
where F_71+ := o (Zo, ..., L_7%). Let q := d(T* + 1). By definition, E[H*(Z)|F_1+] is
F_r+«-measurable and so there exists a measurable function H): R? — R such that
E[H*(Z)|F_7+1=HW(Zo, ..., Z_7+) and E[|[HV(Zy, ..., Z_7+)]?] < 00 (see, e.g., [20],
Lemma 1.13). By combining [20], Lemma 1.33, and the fact that C2°(R?) is dense in C.(IRY)
in the supremum norm we find H® e C °(RY) satisfying

(74) E[|H*(Z) — E[H*(Z)|F_7+])*]

NG

(75) E[|HV Zo. ..., Z_7+) — H? @, ..., Z_1)"]"* < 3

We claim that H@® satisfies Assumption 1. Indeed, H® is Lipschitz continuous on R? and
thus also w-Lipschitz with w = (1{;<7+})sen. In addition, for any T € N+ one has that H}Z)

is a Schwartz function and so also the Fourier transform of H}Z) is a Schwartz function and
the Fourier inversion theorem with (48) indeed hold. Now set T = T* + 1 and choose R so
that the second to last term in the right-hand side of (54) is smaller than £+/8/6 and then

choose N such that Verr _ £+/8/6. Applying Theorem 2 then yields

N
12 ¢ Vs
< —.
3
Applying the triangle inequality and using (74), (75), (76) we then obtain

(76) E[|Yo— H® Zo. ... Z_1+)[*]

E[|Yo — H*(Z)|*]"/* < ev/5.
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Thus, Markov’s inequality gives

12
P<</<Rd>z |y @ — *<z>|2uz(dz>> . 8)

1
< SE[E[Yo - H*@)"A. C.¢]] <5,

as claimed. [

6. Approximation error estimates for echo state networks with output feedback. In
this section we continue our study of the dynamic situation, but we now focus on approxima-
tions based on a slightly different type of reservoir computing systems: echo state networks
with output feedback, that is, systems given for z € (D)%~ and t € Z_ by

x; =0 (Ay;—1 +Cz, + §),

(77
yr = Wx;.

These systems are a popular modification of the echo state networks considered in Section 5.
They are also referred to as Jordan recurrent neural networks (with random internal weights)
and are widely used in the literature.

The advantage of these systems is that they can be used to directly approximate the reser-
voir function in case the functional H*: (Dg)%- — R™ is itself induced by a reservoir sys-
tem. More precisely, consider H* defined via (Dg)%- 3 z+ H*(z) = Yo € R™ with y* de-
termined by

X, =F(x_1.2),

78
(7%) y; =h*(x}), teZ_.

For functionals H* of this type the system (77) can be used to directly approximate the state
updating function, that is, the function F* in (78). The disadvantage of the system (77) is
that the training procedure is more involved, since the readout W is fed back into the state
equation of the echo state network in (77). Nevertheless, these systems are used frequently
in reservoir computing applications and so we also provide a detailed approximation analysis
here.

This section is structured as follows. In Theorem 3 in Section 6.2 we present our approx-
imation result for functionals induced by sufficiently regular reservoir systems. Remarkably,
in this case only one hyperparameter N appears (proportional to the number of neurons, i.e.,
the dimension of x in (77)) and the approximation error is of order O(1/ VN ). Theorem 3
follows from our more general approximation result Theorem 4 below and Proposition 2.
Beforehand we introduce the setting and regularity assumptions in Section 6.1.

6.1. Setting and regular reservoir functionals. As in Section 5 we study systems (77)
in which first A, C, ¢ are generated randomly (and then considered fixed) and subsequently
W is trained in order to approximate H™* as well as possible. We now specify the involved
objects in more detail. First, note that in practice instead of the infinite history system (77) in
fact one always uses a system that satisfies (77) for ¢t > —7 and is initialized at t = —T — 1
with y_7_; = E for some T € N* and some E € R™ satisfying ||E|| < M. Thus, these
are also the systems we consider here. Next, throughout this section Z is a (Dy)%--valued
random variable—a discrete-time stochastic process—independent of A, C, ¢. As in the pre-
vious sections the approximation error is measured conditional on the randomly generated
parameters A, C, ¢. However, in order to provide an alternative viewpoint we formulate the
approximation results in this section in terms of statistical risk. Thus, for some integrable
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random variable Yo we consider the risk defined by R(H) := E[L(H (Z), Yo)] for a loss
function L: R” x R™ — [0, co) satisfying the Lipschitz condition

(79) ILx,y) = LEY| < Lr(Ix=Xl2+lly = ¥ll2), x Xy, yeR"

In order to state our approximation result for echo state networks with output feedback let
us now make precise which kinds of functionals we aim to approximate. Let N* € NT. We
consider functions f: RN x D; — R whose restriction to By41 x Dy satisfies the following
smoothness condition:

DEFINITION 2. A function f: RNA* X Dg — R is sufficiently smooth, if for (x,z) €
Buyy1 % Dg one has f(X,z) = [pn+ia F(w)e! DV dw where f: RV +4 - C is a function
satisfying

. . 1/2
(80) Cj= (VolN*+d(Bl)fRN*+d max (1, [|w]>® +d+3>)}f(w)|2c1w) < .

REMARK 16. For instance, if Dy = R?, f € L'(RV'*4) 0 L2 (RN *4), f denotes the
Fourier transform of f and f is integrable, then condition (80) is equivalent to the require-
ment that f belongs to the Sobolev space WV Td+3.2(RN"+d): see. for example, [7], Theo-
rem 6.1.

REMARK 17. In this section we consider the dimensions d and N* as fixed. The be-
haviour of (80) as a function of N* 4+ d depends on the function f (or rather the family of
functions indexed by N* + d) under consideration. Recalling the estimate for the volume of
the unit ball (70) one observes that the factor Voly+14(B1) in (80) decreases to 0 exponen-
tially as N* +d — oo.

With this definition at hand, we now state the regularity assumption imposed on the func-
tionals under consideration. Note that we focus on approximating the state equation here and
so we set m = N* and take 4™* the identity in (78). To approximate systems with general /2 *
one may either combine the results presented here with any static approximation technique
or proceed as explained in Remark 18 below. Note that under Assumption 2 the system (78)
satisfies the echo state property; see Proposition 1.

ASSUMPTION 2. Suppose H*: (Dy)%~ — R™ satisfies that H*(z) = X, Where x* sat-
isfies (78) for some continuous function F*: RN" x Dy — By C RN " such that:

e foreachz € D;, F*(-, z) is an r-contraction,
e foreach j=1,...,N*, FJ’F is sufficiently smooth (see Definition 2).

We denote Cy+ = ijz*l CF; (with CF; as in (80)).

6.2. Approximation results for echo state networks with output feedback. 'We now derive
bounds on the error arising when echo state networks with output feedback (see (77)) are
employed to approximate functionals induced by sufficiently regular reservoir systems, that
is, functionals satisfying Assumption 2. When all parameters are trainable the networks (77)
are also called Jordan networks. Here we consider an echo state network (77) with A, C, ¢
generated randomly from a generic distribution. The following theorem shows that such echo
state networks with ReLLU activation function and randomly generated parameters exhibit
rather strong universal approximation properties: the same family of systems can be used to
approximate any functional satisfying a mild smoothness condition (expressed in terms of
the Fourier transform as in [3, 22]) and the approximation error is of order O(1/ VN). In
particular, only W needs to be tuned.
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THEOREM 3. Let N € Nt and denote N = NN*. Suppose o: R — R is given as
o(x) = max(x,0), the rows of [A, C] are i.i.d. random variables distributed uniformly
on By C RNt and the entries of ¢ are i.i.d. random variables distributed uniformly on
[—M — 1, M + 1]. Assume that Dy C Bys+1. Then for any functional H* satisfying Assump-
tion 2 there exists a readout W (a Mm’ & -valued random variable) such that for any § € (0, 1),

with probability max(1 — § — w, 0) the system (77) initialized at t = =T — 1 from

VN
any B € R™ with || E|| < M satisfies the echo state property and the associated functional
H{?V’C’C : (Dg)%~ — R™ satisfies
A.C.t X L[2(M +1)Cy T41
(81) R(H, —R(H §—|: +2(M + Dr ,
R(ty ) - RO = S T
where
(82) C*=16\/3((M+1)3+M+17)(M+1)CH*.

Theorem 3 follows from combining the representation in Proposition 2 with our general
reservoir approximation result, Theorem 4 below. Note that in Theorem 4 below also the
boundedness assumption Dy C By is not required.

PROOF OF THEOREM 3. First, for any j = 1,..., N* the function F* satisfies the hy-

potheses of Proposition 2. Therefore, there exists an mtegrable function 71 (RN S R
such that for x € Bys41, z € Dy, the function FJ’-k can be represented as

* = . *
F}(x,2) _A;N*MH o((x,z,1) w)rrj (w) dw,
and rr;‘(a)) =0forall = (w,u) e RV'*4 x R satisfying ||w| > 1 or |u| > M + 1, and
(83) / lol*7} (@) do < 8((M + 1)* + M +17)Cp.
RN*+d+1 J

Recall that the entries of ¢ are uniformly distributed on [—(M + 1), M + 1]. Setting n}‘ (dw) =
n;‘ (w) dw for all k € NT, denoting by 7y and 7, the uniform distribution on By C RN+

and [—(M + 1), (M + 1)], respectively, and setting w = ; ® 7, one has that JT}‘ <« 7 and
k

% =2Voly+4+q(B1)(M + l)n’-*. Using (83) one therefore obtains
k

4[2(/N*+d Nl ( j(w))zn(dw))l/z

*

12
— 4,/6(M + 1)Voly+ 1 (B) Zl( Lo, Tl @0 do)
J:

< 16,/3((M + 13 + M + 17)(M + )Cp+

and so the constant C, in (82) is larger or equal than the constant C, in Theorem 4 below.
Furthermore, s; = 0 for all k € N* and thus the statement follows from Theorem 4 below.
g

REMARK 18. As pointed out above, here we focus on systems (78) in which A* is the
identity. However, Theorem 3 could also be extended to more general i*, namely those
satisfying that F]’-“ = hj_n» o F* is sufficiently smooth (see Definition 2) for j = N* +
1,..., N*4+m. The matrix A in (77) would then be replaced by AP with P = (IN* On.m).
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Finally, we prove a more general echo state network approximation result valid for func-
tionals induced by reservoir systems with reservoir function F* that can be approximated
well by functions of the form (84).

THEOREM 4. Letr € (0,1), Ly >0, N € NT and denote N = NN*. Suppose o : R —
R is Ly-Lipschitz continuous and the rows of [A, C, ¢] are i.i.d. random variables with
distribution . Suppose H*: (Dg)%~ — R™ is the reservoir functional associated to some
F*: RN" x D; — By C RN, that is, for any z € (Dg)%~ it is given as H*(z) = X, Where
x* satisfies (78). Assume that for each v € Dy, F*(-, V) is an r-contraction. Furthermore, for
anyk e NT, j=1,...,N* let 77.';-( be a signed Borel-measure on RN 4+ gych that 71}‘ <,

feweran ol |7f1(dw) < 00 and

drk  \2 1/2
2 J
C,=4V3L, sup E (AQN*HH o (—dzr (w)) n(dw)) < 00.

keN+

Denote foreach j=1,..., N*

*, N _ . N N*
(84) F o (x,v) __AI‘QN*+d+IO‘((X’ v, 1) w)ﬂj (dw), xeR" ,ve Dy

.....

.....

able) such that for any & € (0,1), with probability at least max(l — § —
2, (M4 24 KImassqe,... -7} 12D _ 2sn,0) the system (77) initialized at t = —T — 1 from any

VN
E € R™ with |E|| < M satisfies the echo state property and the associated functional

H‘A;KV,C,C . (Dd)Z_ — R™ satisfies

R(Hy <) = R(HY)|

<_L[(M+2+maxze{o ,,,,, —T}E[||Zz||])c*+ SN
9 1-r)/N 1—r

REMARK 19. Let us discuss the assumption E[max;¢(o,...,—7) IIZ;]|] < oo. First, sup-

pose that the input signal satisfies ||Z;|| < B, P-a.s. for all + € Z_. Then clearly also

logV/N) _
—log(r)
in order to achieve an approximation error bound (81) of order «/_— with high probability

+2(M + 1)rT+1:|.

E[max;e(o,...,—7) IZ/]]] < B and so one may initialize the system at any 7 >

.....

1— (LN). However, our result also covers more general situations. For instance, suppose

that d = 1 and for each ¢t € Z_, Z, is standard normally distributed (not necessarily indepen-
dent). Then one can show that

E[Ie{énax ||zt||] < /210g2T),

and consequently, choosing T as in the first case, one obtains an error bound of order \/Lﬁ

with high probability 1 — O (7“”%(};“” ).

PROOF OF THEOREM 4. Recall that N* = m, h*(y) =y and let us write A, C, ¢ as block
matrices

AD c ;(1)
A=| : |eRVWN' c=| : |eMyyrg and c=| : |eRMV,
AN c™v ;(N)
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where A©), C® and ;(") are random matrices (resp. vectors) valued in My« y+, My+ 4 and
RN *, respectively, for each i =1, ..., N. Define the readout

(i)
Vl
vy

where Ug-i) = (A(.i), Cy), g“;")) denotes the jth row of (A(i), c®, ;U)) and Vj(i) is given as

. dnN .
@ _ "7 (@)
By our choice of Vj(i) one calculates foreachi =1,..., N andanyy € By/+1,Z € Dy,

E[(Wio(AVy + €02+ ¢)) ] =E[V{"o((.2. 1) - U})]
dn N
8 = Cw)—L
( ) B RN*+d+1 6((y’ z 1) (!)) d]T (Q))Tl'(dw)

=F"(y,2)

and

dr 2
E[(V;))2 (AP + 117 + 1657 1P)] :/ Ilelz(ﬁ(wO 7 (dw).

RN*+d+1
This shows that
N*
1)\2 12 12 1)2\11/2
(36) 4/3Le Y E[(V (A P+ 1P+ [P < .
j=1

Measurability and echo state property:

Consider
Qesp=[weQ: M(w)<M+1}, M= sup |WFMCix 7).
(87) XEBM_H
te{0,...,—T}

By continuity the supremum in (87) is finite and can also be taken over a countable set. This
shows that Qgsp € F. Furthermore, consider the system (77) initialized at t = —7 — 1 from
a given E € R™ with | E|| < M. Clearly, for any z € (Dd)Z* there is a unique (y,);=0,... —T
satisfying (77) and for any w € Q the function H{,AV((:))’C(”)’C(LU): (Dg)%~ — RN mapping
yAS (Dd)Z* to yo(w) is continuous. On the other hand, for any z € (Dd)Z* the mapping

w > HQ((Z))’C(‘U) @) (z) is F-measurable and thus [1], Lemma 4.51, implies that H(;‘V’C’C is

product-measurable, that is, the function (w, z) 3 Q x (Dg)% H‘?V(((:)U))’C(w)’aw) (z) e R™ is

F® B((Dd)Z*)—measurable.
Writing Y for the associated process y with input z = Z, we note that for w € Qgsp and
t>-T

Y, () = W(w) FA@-C@L@)(y, | (w),Z,(w))

and consequently, by (87), ||Y;(w)|| <M + 1forallt > —T — 1.
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Risk estimation on Qgsp:
First, by (79) one has for any measurable H : (D)% - R™

|R(H) — R(H*)| < LLE[”H(Z) — H*(Z)H] = LL/(D 2 ||H(z) — H*(z)||,u,z(dz).
-
Thus
(88) UR( A © ;) (H*)|ILQESP] = LLE[” H\éV’C’C(Z) — H*(Z) ”:H‘QESP]‘
For each t > —T one estimates
IlQESP]

E[“Yl - X* “JLQESP]
:H‘QESP]

+ SN+ ’”E[HYFI -X7 ||]lQESP]'

Denoting by €1, ..., ey independent Rademacher random variables, we thus obtain by (85),
independence and symmetrization that for any z € Dy

_E[H ZWa ADY,_ +COZ, +¢D) — F*(X}_|, Z,)

1 Y . . .
— > Wioc(AVy+COZ, +¢D) - F*N(y, Z;)
i=1

§E|: sup

YEBM 41

(39)
+ E[HF*’N(Yz—l, Z,)— F*(Y;-1, Zl)“]lQESP]

+E[HF*(Y,_1,Z,)—F*( t— l’Zt)“]lQESP]

1 ¥ . ) ,
— Y Wio(AYy+CYZ +¢V) - FN(y, Zy)
i=l1

S]E[ sup

YEBy+1

1 N . . .
E[ sup |~ > Wio(AVy+CPz+¢D) — F*N(y,z) }
YEBM 41 i=1
N* LA . N
(90) <> E[ sup |3 Vo (.2 1) - UP) — F My 2) }
j=1 LYE€Bu+1 i=1
N* LA ,
<2 Z E|: sup | — Z Vj(’)e,-a((y, z, 1) -U?)) ]
j=1 LYE€Bu+1 i=1
Furthermore, for any v; € R, u; = (a;,¢;, &) € S,i =1, ..., N the contraction principle [23],
Theorem 4.12, (applied to the contractions o; (x) = Ly, £0yv;0 (x ﬁ)) yields
N
]E|: sup Zv,-e,-a((y, z,1) u;) :|
YEBM+1|i=1
N
:E[ sup | Y &i0i(Lovi(y, Z,l)‘ui):|
YEBM+1|i—1

N
> vigi((y.z. 1) - w)

1) §2L(,IE|: sup
i=1

YEBM 41

|
J+e{2

> visiei -2+ &)
i=1

N
Z vi&ia;

i=1

)

<2L, ((M + 1)1@[
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N 1/2 N 1/2 N 1/2
<2L, ((M + 1)(2 v?la; ||2) + ||z||<2 v,-2||cl~||2> + (Z v?|;l-|2) )
i=1 i=1 i=1

By conditioning, using independence and combining this with (90) one thus obtains
1 , : .
— ZWiG(A(l)y +COz 4+ C(l)) — F*N(y, z)

|

N 1/2 N . 1/2
[(M—I—l)(Z (v®) ||A<l>1|) +||z||(Z(V}’)VIICE-’)HZ)

JE|: sup

YEBuM 1

N
< 4L,

j=1
N . 12

9 o+ (Z(V}”)ﬂ:}”lz) }
i=1

L N*
(VIO 1AL PT2 + gziE[ (v, )P | V)72

+E[( (”) &5 1172,

Inserting (86) thus yields

1 Y , . .

— > Wio(AVy+COZ +¢D) - F*N(y, )
i=1

_ (M 42+ ENZNC,

< — .

Iterating (89) (T + 1)-times and inserting (93) yields

|

E[ sup
YEBy 41

(93)

E[HYO - XS ”]lQESP]

(M +2+E[Z]IDCx

< Z | e o [T HE[Y 71 = X Lo

(M + 2 +max;c(o,..., -1y E[IIZ:|1)Cs SN
< +
(1-r)"/N 1—r

Noting that Yo = Hyy &% (Z), (93) and (88) hence prove that

+2(M + DrT+1,

HR( ACC) R(H*)’:H'QESP]

(94) (M +2+maxieqo.. 1) ElIZDCx sy .
Ly * 20M +1 +‘].
=< [ W, t—, F2M+Dr

Estimating P(Q2 \ Qgsp):
It thus remains to prove that the probability that the random ESN parameters lie in Qgsp
increases to 1 at rate 1/ /N. To this end, first note that for any x € RN *, ze Dy

|[WFACS(x, 2)| < |[WFACE (x,2) — F*N(x,2)| + | F*N (x,2) — F*(x,2)| + M
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and therefore
P(2\ Qgsp)
<PM>M+1)

SP( sup  [WFACE(x, Z,) — F*N(x,Z,) |
XEBpy+1
t€{0,...,.— T}

+ PN, 2 - Fr(x, 2] = 1)

1
S P( Sup HWFA’C’C(X7 Zt) - F*’N(Xa ZZ)“ Z 5)
(95) ot

.....

1

+IP’( sup IIF*’N<x,Z,)—F*(x,Zf>Hz—)
XEBuy+1 2
tef0,...,—T}

<2E[ sup  [WFMNOE(x Z) — FV(x 2] ] + 25w

=2E[E[ sup [WFAixow) - FVxow|] ]+ 28w
X€Buy 11 z=1
ve{zg,...,.2_T}
The inner expectation can now be estimated using precisely the same arguments as in (90),
(91), (92) yielding for any z € (Dg)%-

E[ sup  [WFACS(x,v) — F*N(x,v) H]
X€Bp 11
vef{zo,...,2-T}

N* N
1 . .
<2L; Y E sup | > Vj(')sior((y, v, 1) -U;'))
j=1 i=1

YEBy+1 ]

ve{zg,....Z2_T}
N* T N

<4L E 1 y e, n.u?

— UZ Sup NZ J 81((yvv7 ) J )
—

B .
Jj YELM+1 i=1
ve(zg,....z-T}

4L, Y- D21 A (D 271/2 DA\2 1 ~(1) 271/2
<2223 M+ DE[(VV) AL 1Y +—ngm§T“nw)EKVf))HC§”|]/
P RE AR e B VR

1)\2 1)211/2
+E[(v")? ¢V P12,
Combining this with (95) yields

2(M 42 + E[max;eqo,.., -1} 1ZIDCx

6 P(Q\ 2
(96) (£2\ Qgsp) < N

+2SN

Putting together the ingredients:
Altogether, setting
. 2[(M + 2+ max;c(o,...,—7) E[IIZ: ] Cx SN

2 M 1 T+1]
5 (1— )N Ty, My
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and combining (94) and (96) yields

P(|R(Hy <€) = R(H*)| > 1)

= P(‘R(H\év’c,g) - R(H*)mﬂﬁsp > 1) +P(Q\ QEsp)

2(M + 2 + E[max;eqo,..., -1} 1Z: |1 Cs

<5+
VN

+ 2sn. 0
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